Systemprogrammering och operativsystem, HT 2008
L aboration 2: Writing a Dynamic Storage Allocator

Inge Frick (i nge@ada. kt h. se)isthelead person for this assignment.

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
mal | oc, free andreal | oc routines. You are encouraged to explore the design space creatively and
implement an allocator that is correct, efficient and fast.

2 Logistics

You may work in a group of up to two people. Any clarifications and revisions to the assignment will be
posted on the course Web page.

3 Hand Out Instructions

Start by copying /i nf o/ sysprog08/ | abbar /1 ab2/ mal | ocl ab- handout . t ar to a protected

directory inwhich you plan to do your work. Then givethecommand: t ar xvf mal | ocl ab- handout .

Thiswill cause a number of files to be unpacked into the directory. The only file you will be modifying and
handing inisnm c. Thendri ver . c program is adriver program that allows you to evaluate the perfor-
mance of your solution. Use the command meke to generate the driver code and run it with the command
./mdriver -V mm c. (The- Vflag displays helpful summary information.)

Looking at the file nm ¢ you'll notice a C structure t eaminto which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do thisright
away so you don’t forget.

When you have completed the lab, you will hand in only one file (mm c¢), which contains your solution.

4 How toWork ontheLab

Your dynamic storage alocator will consist of the following four functions, which are declared in rm h
and definedinmm c.

i nt mm_init(void);

tar.

void *mm nmal | oc(size_t size);
void mmfree(void *ptr);
void *mmreall oc(void *ptr, size_ t size);

The mm c file we have given you implements the simplest but still functionally correct malloc package that
we could think of. Using this as a starting place, modify these functions (and possibly define other private
st at i c functions), so that they obey the following semantics:

e nmi ni t: Before calling mnmnal | oc nmreal | oc or mmf r ee, the application program (i.e.,
the trace-driven driver program that you will use to evaluate your implementation) calls mmi ni t to
perform any necessary initializations, such as allocating the initial heap area. The return value should
be -1 if there was a problem in performing the initialization, 0 otherwise.

e mmmal | oc: The nmmal | oc routine returns a pointer to an allocated block payload of at least
si ze bytes. The entire allocated block should lie within the heap region and should not overlap with
any other alocated chunk.

We will compare your implementation to the version of mal | oc supplied in the standard C library
(I'i bc). Sincethel i bc malloc aways returns payload pointers that are aligned to 8 bytes, your
malloc implementation should do likewise and always return 8-byte aligned pointers.

e mmf ree: Themmf r ee routine frees the block pointed to by pt r . It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (pt r) was returned by an earlier call to
nmmal | oc or mmr eal | oc and has not yet been freed.

e mMmr eal | oc: Thenmr eal | oc routine returns a pointer to an allocated region of at least si ze
bytes with the following constraints.

— if pt r isNULL, the call isequivalent to mmmal | oc(si ze) ;
— if si ze isequal to zero, the call isequivdent tommfree(ptr);

— if pt r isnot NULL, it must have been returned by an earlier call tommumal | oc ormmr eal | oc.

The cdl to mmr eal | oc changes the size of the memory block pointed to by pt r (the old
block) to si ze bytes and returns the address of the new block. Notice that the address of the
new block might be the same asthe old block, or it might be different, depending on your imple-
mentation, the amount of internal fragmentation in the old block, and the size of ther eal | oc
request.
The contents of the new block are the same as those of the old pt r block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized. Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new block are identical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresponding | i bc mal | oc,real | oc,andf r ee rou-
tines. Typerman mal | oc to the shell for complete documentation.

5 Heap Consistency Checker

Dynamic memory alocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve alot of untyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

e Isevery block in the free list marked as free?

Are there any contiguous free blocks that somehow escaped coalescing?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?
e Do any allocated blocks overlap?

e Do the pointersin a heap block point to valid heap addresses?

Your heap checker will consist of the functioni nt mmcheck(voi d) innm c. It will check any invari-
ants or consistency conditions you consider prudent. It returns a nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestions nor are you required to check all of them. You are
encouraged to print out error messages when nmcheck fails.

This consistency checker is for your own debugging during development. When you submit mm ¢, make
sure to remove any calsto nmcheck as they will slow down your throughput. Style points will be given
for your nrm.check function. Make sure to put in comments and document what you are checking.

6 Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functionsinmen i b. c:

e voi d *memsbrk(int incr): Expands the heap by i ncr bytes, where i ncr is a positive
non-zero integer and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unix sbr k function, except that memsbr k accepts only a positive
non-zero integer argument.

e voi d *memheap_| o(voi d) : Returns ageneric pointer to the first byte in the heap.
e voi d *memheap_hi (voi d) : Returns ageneric pointer to the last byte in the heap.
e sizet memheapsi ze(voi d) : Returns the current size of the heap in bytes.

e sizet mempagesi ze(voi d) : Returnsthe system’s page size in bytes (8K on Solaris systems).

7 TheTracedriven Driver Program

Thedriver program rdr i ver . c inthemal | ocl ab- handout . t ar distribution tests your nm ¢ pack-
age for correctness, space utilization, and throughput. The driver program is controlled by a set of trace
files that are in the / i nf o/ sysprog08/ | abbar/ | ab2/traces directory. Each trace file contains
a sequence of alocate, realocate, and free directions that instruct the driver to cal your mmmal | oc,
mmr eal | oc, and nmf r ee routines in some sequence. The driver and the trace files are the same ones
we will use when we grade your handin nm c file.

Thedriver mdr i ver . ¢ accepts the following command line arguments:

e -t <tracedir>: Look for the default trace filesin directory t r acedi r instead of the default
directory defined inconfi g. h.

o -f <tracefil e>: Useoneparticular t r acefi | e for testing instead of the default set of trace-
files.

- h: Print asummary of the command line arguments.
e -| : Runand measurel i bc malloc in addition to the student’s malloc package.
e - Vv: Verbose output. Print a performance breakdown for each tracefile in a compact table.

e - V: More verbose output. Prints additional diagnostic information as each trace file is processed.
Useful during debugging for determining which trace file is causing your malloc package to fail.

8 Programming Rules

e You should not change any of the interfacesinnmm c.

e You should not invoke any memory-management related library calls or system calls. This excludes
theuse of mal | oc, cal | oc,free,real |l oc, sbrk, brk or any variants of these calls in your
code.

e You are alowed to define global or st at i ¢ compound data structures such as arrays or structs in
your mm ¢ program, but you may not use them to store your blocks other than temporary.

e For consistency withthel i bc mal | oc package, which returns blocks aligned on 8-byte boundaries,
your alocator must always return pointers that are aligned to 8-byte boundaries. The driver will
enforce this requirement for you.

9 Evaluation

You will receive zero points if you break any of the rules or your code is buggy and crashes the driver.
Otherwise, your grade will be calculated as follows:

e Correctness (33 points). You will receive 3 points for each of the 11 trace filesfor which your solution
passes the correctness tests performed by the driver program.

e Performance (45 points). Two performance metrics will be used to evaluate your solution:;

— Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., alocated viammumal | oc or mmr eal | oc but not yet freed via mmf r ee) and the size
of the heap used by your allocator. The optimal ratio equals to 1. You should find good policies
to minimize fragmentation in order to make this ratio as close as possible to the optimal.

— Throughput: The average number of operations completed per second.

Thedriver program summarizes the performance of your allocator by computing a performance index,
P, which is aweighted sum of the space utilization and throughput

T
P =wU + (1 — w) min <1,—>
Tlive

where U isyour space utilization, 7" isyour throughput, and 73;;.. isthe estimated throughput of | i bc
malloc for the default traces.! The performance index favors space utilization over throughput, with
avalue of w = 0.6. Notice that writing code that isfaster than | i bc will not give you more points.

Observing that both memory and CPU cycles are expensive system resources, we adopt thisformulato
encourage balanced optimization of both memory utilization and throughput. I1deally, the performance
index will resch P = w + (1 — w) = 1 or 100%. Since each metric will contribute at most w and
1 — w to the performance index, respectively, you should not go to extremes to optimize either the
memory utilization or the throughput only. To receive a good score, you must achieve a balance
between utilization and throughput.

e Style (12 points).

— Your code should be decomposed into functions and use as few global variables as possible.

— Your code should begin with a header comment that describes the structure of your free and
allocated blocks, the organization of the free list, and how your alocator manipulates the free
list. each function should be preceeded by a header comment that describes what the function
does.

— Each subroutine should have a header comment that describes what it does and how it does it.
— Your heap consistency checker nrmcheck should be thorough and well-documented.

You will be awarded 6 points for a good heap consistency checker and 6 points for good program
structure and comments.

Based on these points you will get a grade on this work. 64 points will give grade E, 70 points will give
grade D, 76 points will give grade C, 82 points will give grade B and 88 points will give grade A.

10 Handin Instructions

e Make sure you have included your names and user IDs in the header comment of t sh. c.

e Create ateam name of the form:

1The value for Tys. is calculated by ndri ver asthel i bc throughput for the tracefile bi nar y2- bal . r ep. Thisgives a
resonably accurate and system independent resullt.

11

— "ID” where ID isyour user ID, if you are working alone, or
— “ID{+1ID5" where ID1 is the user ID of the first team member and 1D, is the user ID of the
second team member.
We need you to create your team names in this way so that we can autograde your assignments.

Tohand inyour t sh. c file, type:
make handi n TEAM=t eammane
wheret eammarre is the team name described above.

After the handin, if you discover a mistake and want to submit arevised copy, type
make handi n TEAMFt eammane VERSI ON=2
Keep incrementing the version number with each submission.

You should verify your handin by looking in/ i nf o/ syspr og08/ | abbar /| ab2/ handi n
You have list and insert permissions in this directory, but no read or write permissions.

Hints

Usethemdri ver -f option. During initial development, using tiny trace files will smplify debug-
ging and testing. We have included two such tracefiles(short 1, 2- bal . r ep) that you can use for
initial debugging.

Usethendri ver -v and - V options. The - v option will give you a detailed summary for each
trace file. The - V will aso indicate when each trace file is read, which will help you isolate errors.

Compile with gcc - g and use a debugger. A debugger will help you isolate and identify out of
bounds memory references.

Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a ssmple alocator based on an implicit free list. Use this as a point of departure. Don't
start working on your allocator until you understand everything about the simple implicit list allocator.

Encapsulate your pointer arithmetic in C preprocessor macros. Pointer arithmetic in memory man-
agers is confusing and error-prone because of all the casting that is necessary. You can reduce the
complexity significantly by writing macros for your pointer operations. See the text for examples.

Do your implementation in stages. The first 9 traces contain requests to mal | oc and f r ee. The
last 2 traces contain requests for r eal | oc, mal | oc, and f r ee. We recommend that you start by
getting your mal | oc and f r ee routines working correctly and efficiently on the first 9 traces. Only
then should you turn your attention to the r eal | oc implementation. For starters, build r eal | oc
on top of your existing mal | oc and f r ee implementations. But to get realy good performance,
you will need to build astand-aloner eal | oc.

Use a profiler. You may find the gpr of tool helpful for optimizing performance.

Sart early! It is possible to write an efficient malloc package with afew pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!

