
Systemprogrammering 2008
Laboration 3: Web Proxy

Inge Frick (inge@nada.kth.se) is the lead person for this assignment.

Introduction

A Web proxy is a program that acts as a middleman between a Web browser and an end server. Instead of
contacting the end server directly to get a Web page, the browser contacts the proxy, which forwards the
request on to the end server. When the end server replies to the proxy, the proxy sends the reply on to the
browser.

Proxies are used for many purposes. Sometimes proxies are used in firewalls, such that the proxy is the only
way for a browser inside the firewall to contact an end server outside. The proxy may do translation on the
page, for instance, to make it viewable on a Web-enabled cell phone. Proxies are also used as anonymizers.
By stripping a request of all identifying information, a proxy can make the browser anonymous to the end
server. Proxies can even be used to cache Web objects, by storing a copy of, say, an image when a request
for it is first made, and then serving that image in response to future requests rather than going to the end
server.

In this lab, you will write a concurrent Web proxy that logs requests. In the first part of the lab, you will
write a simple sequential proxy that repeatedly waits for a request, forwards the request to the end server,
and returns the result back to the browser, keeping a log of such requests in a disk file. This part will help
you understand basics about network programming and the HTTP protocol.

In the second part of the lab, you will upgrade your proxy so that it uses threads to deal with multiple clients
concurrently. This part will give you some experience with concurrency and synchronization, which are
crucial computer systems concepts.

Logistics

As always, you may work in a group of up to two people. The only handin will be electronic. After the
handin you must personally demonstrate the server to Inge Frick. Any clarifications and revisions to the
assignment will be posted on the course Web page.

Hand Out Instructions

Start by copying /info/sysprog08/labbar/lab3/proxylab-handout.tar to a directory in
which you plan to do your work. Then give the command “tar xvf proxylab-handout.tar”.

1



This will cause a number of files to be unpacked in the directory:

• proxy.c: This is the only file you will be modifying and handing in. It contains the bulk of the
logic for your proxy.

• csapp.c: This is the file of the same name that is described in the CS:APP textbook. It contains
error handling wrappers and helper functions such as the RIO (Robust I/O) package (CS:APP 11.4),
open clientfd (CS:APP 12.4.4), and open listenfd (CS:APP 12.4.7).

• csapp.h: This file contains a few manifest constants, type definitions, and prototypes for the func-
tions in csapp.c.

• Makefile: Compiles and links proxy.c and csapp.c into the executable proxy.

Your proxy.c file may call any function in the csapp.c file. However, since you are only handing in a
single proxy.c file, please don’t modify the csapp.c file. If you want different versions of functions in
csapp.c (see the Hints section), write new functions in the proxy.c file.

Part I: Implementing a Sequential Web Proxy

In this part you will implement a sequential logging proxy. Your proxy should open a socket and listen
for a connection request. When it receives a connection request, it should accept the connection, read the
HTTP request, and parse it to determine the name of the end server. It should then open a connection to the
end server, send it the request, receive the reply, and forward the reply to the browser if the request is not
blocked.

Since your proxy is a middleman between client and end server, it will have elements of both. It will act as
a server to the web browser, and as a client to the end server. Thus you will get experience with both client
and server programming.

Logging

Your proxy should keep track of all requests in a log file named proxy.log. Each log file entry should be
a file of the form:

Date: browserIP URL size

where browserIP is the IP address of the browser, URL is the URL asked for, size is the size in bytes
of the object that was returned. For instance:

Sun 27 Oct 2002 02:51:02 EST: 128.2.111.38 http://www.cs.cmu.edu/ 34314

Note that size is essentially the number of bytes received from the end server, from the time the connection
is opened to the time it is closed. Only requests that are met by a response from an end server should be
logged. We have provided the function format log entry in csapp.c to create a log entry in the
required format.

2



Port Numbers

You proxy should listen for its connection requests on the port number passed in on the command line:

unix> ./proxy 15213

You may use any port number p, where 1024 ≤ p ≤ 65536, and where p is not currently being used by any
other system or user services (including other students’ proxies). See /etc/services for a list of the
port numbers reserved by other system services.

Part II: Dealing with multiple requests concurrently

Real proxies do not process requests sequentially. They deal with multiple requests concurrently. Once you
have a working sequential logging proxy, you should alter it to handle multiple requests concurrently. The
simplest approach is to create a new thread to deal with each new connection request that arrives (CSAPP
13.3.8).

With this approach, it is possible for multiple peer threads to access the log file concurrently. Thus, you
will need to use a semaphore or mutex to synchronize access to the file such that only one peer thread can
modify it at a time. If you do not synchronize the threads, the log file might be corrupted. For instance, one
line in the file might begin in the middle of another.

Evaluation

Each group will be evaluated on the basis of your handed in proxy.c file and the demnostration.

• Basic proxy functionality (45 points). Your sequential proxy should correctly accept connections,
forward the requests to the end server, and pass the response back to the browser, making a log entry
for each request. Your program should be able to handle proxy browser requests to the following Web
sites and correctly log the requests:

– http://www.yahoo.com

– http://www.aol.com

– http://www.nfl.com

• Handling concurrent requests (30 points).

Your proxy should be able to handle multiple concurrent connections. We will determine this using
the following test: (1) Open a connection to your proxy using telnet, and then leave it open without
typing in any data. (2) Use a Web browser (pointed at your proxy) to request content from some end
server.

Furthermore: Your proxy should be thread-safe, protecting all updates of the log file and protecting
calls to any thread unsafe functions such as gethostbyaddr. Your threads should run detached,
and your code should not have any memory leaks. We will determine this by inspecting the code.

• Style (15 points). Up to 15 points will be awarded for code that is readable and well commented.
Your code should begin with a comment block that describes in a general way how your proxy works.
Furthermore, each function should have a comment block describing what that function does.

3



Based on these points you will get a grade on this work. 64 points will give grade E, 70 points will
give grade D, 76 points will give grade C, 82 points will give grade B and 88 points will give grade
A.

Hints

• /info/sysprog08/examples contains some examples of echoservers and a tiny webbserver.
You can copy any code you want from these examples.

• The best way to get going on your proxy is to start with the basic echo server (CS:APP 12.4.9) and
then gradually add functionality that turns the server into a proxy.

• Initially, you should debug your proxy using telnet as the client (CS:APP 12.5.3).

• Later, test your proxy with a real browser. Explore the browser settings until you find “proxies”, then
enter the host and port where you’re running your proxy. With Firefox, chose Edit, then Preferences,
then General, then Connection settings, then Manual Proxy Configuration. With Netscape, choose
Edit, then Preferences, then Advanced, then Proxies, then Manual Proxy Configuration. In Internet
Explorer, choose Tools, then Options, then Connections, then LAN Settings. Check ’Use proxy
server,’ and click Advanced. Just set your HTTP proxy, because that’s all your code is going to be
able to handle.

• Since we want you to focus on network programming issues for this lab, we have provided you with
two additional helper routines: parse uri, which extracts the hostname, path, and port components
from a URI, and format log entry, which constructs an entry for the log file in the proper format.

• Be careful about memory leaks. When the processing for an HTTP request fails for any reason, the
thread must close all open socket descriptors and free all memory resources before terminating.

• You will find it very useful to assign each thread a small unique integer ID (such as the current request
number) and then pass this ID as one of the arguments to the thread routine. If you display this ID in
each of your debugging output statements, then you can accurately track the activity of each thread.

• To avoid a potentially fatal memory leak, your threads should run as detached, not joinable (CS:APP
13.3.6).

• Since the log file is being written to by multiple threads, you must protect it with mutual exclusion
semaphores whenever you write to it (CS:APP 13.5.2 and 13.5.3).

• Be very careful about calling thread-unsafe functions such as inet ntoa, gethostbyname, and
gethostbyaddr inside a thread. In particular, the open clientfd function in csapp.c is
thread-unsafe because it calls gethostbyaddr, a Class-3 thread unsafe function (CSAPP 13.7.1).
You will need to write a thread-safe version of open clientfd, called open clientfd ts, that
uses a variant of the lock-and-copy technique (CS:APP 13.7.1) when it calls gethostbyaddr.

• Use the RIO (Robust I/O) package (CS:APP 11.4) for all I/O on sockets. Do not use standard I/O on
sockets. You will quickly run into problems if you do. However, standard I/O calls such as fopen
and fwrite are fine for I/O on the log file.

4



• The Rio readn, Rio readlineb, and Rio writen error checking wrappers in csapp.c are
not appropriate for a realistic proxy because they terminate the process when they encounter an
error. Instead, you should write new wrappers called Rio readn w, Rio readlineb w, and
Rio writen w that simply return after printing a warning message when I/O fails. When either
of the read wrappers detects an error, it should return 0, as though it encountered EOF on the socket.

• Reads and writes can fail for a variety of reasons. The most common read failure is an errno =
ECONNRESET error caused by reading from a connection that has already been closed by the peer
on the other end, typically an overloaded end server. The most common write failure is an errno =
EPIPE error caused by writing to a connection that has been closed by its peer on the other end. This
can occur for example, when a user hits their browser’s Stop button during a long transfer.

• Writing to a connection that has been closed by the peer first time elicits an error with errno set to
EPIPE. Writing to such a connection a second time elicits a SIGPIPE signal whose default action is
to terminate the process. To keep your proxy from crashing you can use the SIG IGN argument to the
signal function (CS:APP 8.5.3) to explicitly ignore these SIGPIPE signals

• Most servers now run http/1.1 but some still run http/1.0. To handle this, do not use Content-Length,
rather use that the headers section is ended by an empty line (only CR LF) and read the body from
the server until it ends with EOF (Rio readlineb returns 0). Servers running http/1.1 by default
use persistent connections. This means that the body from the server doesn’t end with EOF, instead
you have to calculate the end by other means. To avoid this do not use persistent connections thus:
Parse the header lines from the client and remove any ’Connection: Keep-Alive’ line and add a
line ’Connection: close’. Adding headers that http/1.0-servers don’t understand is not a problem.
Unknown headers are just ignored.

• Another problem is that a http/1.1-server wants a Host: header. Always send a Host: header and
remove the host-part from the url you send to the server. A proper http/1.1-server should understand
an url with a host part but some dont’t, e.g. www.aol.com.

Handin Instructions

• Remove any extraneous print statements.

• Make sure that you have included your identifying information in proxy.c.

• Create a team name of the form:

– “ID” where ID is your user ID.

• To hand in your proxy.c file, type:

make handin TEAM=teamname

where teamname is the team name described above.

• After the handin, you can submit a revised copy by typing

make handin TEAM=teamname VERSION=2

5



You can verify your handin by looking at

/info/sysprog08/labbar/lab3/handin

You have list and insert permissions in this directory, but no read or write permissions.

• After you have handed in your file, contact Inge by phone: 08-7906956 or by mail: inge@nada.kth.se
to get a time for a demo of your proxy server.

6


