
Systemprogrammering
Föreläsning 10

Concurrent Servers

TopicsTopics
! Limitations of iterative servers

! Process-based concurrent servers

! Event-based concurrent servers

! Threads-based concurrent servers

F10 – 2 – Systemprogrammering 2007

Three Basic Mechanisms for Creating
Concurrent Flows

1. Processes1. Processes
! Kernel automatically interleaves multiple logical flows.
! Each flow has its own private address space.

2. I/O multiplexing with 2. I/O multiplexing with select() select() oror poll() poll()
! User manually interleaves multiple logical flows.
! Each flow shares the same address space.
! Popular for high-performance server designs.

3. Threads3. Threads
! Kernel automatically interleaves multiple logical flows.
! Each flow shares the same address space.
! Hybrid of processes and I/O multiplexing!

F10 – 3 – Systemprogrammering 2007

Process-Based Concurrent Server
/*
 * echoserverp.c - A concurrent echo server based on processes
 * Usage: echoserverp <port>
 */
#include <ics.h>
#define BUFSIZE 1024
void echo(int connfd);
void sigchld_handler(int sig);

int main(int argc, char **argv) {
 int listenfd, connfd, port, clientlen;
 struct sockaddr_in clientaddr;

 if (argc != 2) {
 fprintf(stderr, "usage: %s <port>\n", argv[0]);
 exit(0);
 }
 port = atoi(argv[1]);
 listenfd = Open_listenfd(port);

F10 – 4 – Systemprogrammering 2007

Process-Based Concurrent Server (cont)

 Signal(SIGCHLD, sigchld_handler); /* parent must reap children! */

 /* main server loop */
 while (1) {
 clientlen = sizeof(struct sockaddr_in);
 connfd = Accept(listenfd, (struct sockaddr *) &clientaddr,
 &clientlen));
 if (Fork() == 0) {
 Close(listenfd); /* child closes its listening socket */
 echo(connfd); /* child reads and echoes input line */
 Close(connfd); /* child is done with this client */
 exit(0); /* child exits */
 }
 Close(connfd); /* parent must close connected socket! */
 }
}

F10 – 5 – Systemprogrammering 2007

Process-Based Concurrent Server (cont)

/* sigchld_handler - reaps children as they terminate */
void sigchld_handler(int sig) {
 while ((waitpid(-1, NULL, WNOHANG)) > 0)
 ;
 return;
}

F10 – 6 – Systemprogrammering 2007

Implementation Issues With
Process-Based Designs

Server should restart Server should restart acceptaccept call if it is interrupted by a call if it is interrupted by a

transfer of control to the SIGCHLD handlertransfer of control to the SIGCHLD handler
! Not necessary for systems with POSIX signal handling.

"Our Signal wrapper tells kernel to automatically restart accept
! Required for portability on some older Unix systems.

Server must reap zombie childrenServer must reap zombie children
! to avoid fatal memory leak.
! Can be avoided by the “Double fork” trick.

Server must Server must closeclose its copy of its copy of connfdconnfd..
! Kernel keeps reference for each socket.
! After fork, refcnt(connfd) = 2.
! Connection will not be closed until refcnt(connfd)=0.

F10 – 7 – Systemprogrammering 2007

Pros and Cons of
Process-Based Designs

+ Handles multiple connections concurrently+ Handles multiple connections concurrently

+ Clean sharing model+ Clean sharing model
! descriptors (no)
! file tables (yes)
! global variables (no)

+ Simple and straightforward.+ Simple and straightforward.

- Additional overhead for process control.- Additional overhead for process control.

- Nontrivial to share data between processes.- Nontrivial to share data between processes.
! Requires IPC (interprocess communication) mechanisms

FIFO’s (named pipes), System V shared memory and semaphores

I/O multiplexing provides more control with less overhead...I/O multiplexing provides more control with less overhead...

F10 – 8 – Systemprogrammering 2007

Event-Based Concurrent Servers
Using I/O Multiplexing

Maintain a pool of connected descriptors.Maintain a pool of connected descriptors.

Repeat the following forever:Repeat the following forever:
! Use the Unix select function to block until:

" (a) New connection request arrives on the listening descriptor.

" (b) New data arrives on an existing connected descriptor.

! If (a), add the new connection to the pool of connections.

! If (b), read any available data from the connection

"Close connection on EOF and remove it from the pool.

F10 – 9 – Systemprogrammering 2007

The select Function
select()select() sleeps until one or more file descriptors in the set sleeps until one or more file descriptors in the set readset readset are ready are ready

for reading. for reading.

#include <sys/select.h>

int select(int maxfdp1, fd_set *readset, NULL, NULL, NULL);

readset

• Opaque bit vector (max FD_SETSIZE bits) that indicates membership in a

descriptor set.

• If bit k is 1, then descriptor k is a member of the descriptor set.

maxfdp1

• Maximum descriptor in descriptor set plus 1.

• Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select()select() returns the number of ready descriptors and sets each bit of returns the number of ready descriptors and sets each bit of

readsetreadset to indicate the ready status of its corresponding descriptor. to indicate the ready status of its corresponding descriptor.

F10 – 10 – Systemprogrammering 2007

Macros for Manipulating Set Descriptors

void FD_ZERO(fd_set *fdset);void FD_ZERO(fd_set *fdset);

! Turn off all bits in fdset.

void FD_SET(int fd, fd_set *fdset);void FD_SET(int fd, fd_set *fdset);

! Turn on bit fd in fdset.

void FD_CLR(int fd, fd_set *fdset);void FD_CLR(int fd, fd_set *fdset);
! Turn off bit fd in fdset.

int FD_ISSET(int fd, *fdset);int FD_ISSET(int fd, *fdset);
! Is bit fd in fdset turned on?

F10 – 11 – Systemprogrammering 2007

select Example

/*
 * main loop: wait for connection request or stdin command.
 * If connection request, then echo input line
 * and close connection. If stdin command, then process.
 */
 printf("server> ");
 fflush(stdout);
 fdset readfs;
 while (notdone) {
 /*
 * select: check if the user typed something to stdin or
 * if a connection request arrived.
 */
 FD_ZERO(&readfds); /* initialize the fd set */
 FD_SET(listenfd, &readfds); /* add socket fd */
 FD_SET(0, &readfds); /* add stdin fd (0) */
 Select(listenfd+1, &readfds, NULL, NULL, NULL);

F10 – 12 – Systemprogrammering 2007

select Example (cont)

First we check for a pending event on stdin.First we check for a pending event on stdin.
 /* if the user has typed a command, process it */
 if (FD_ISSET(0, &readfds)) {
 fgets(buf, BUFSIZE, stdin);
 switch (buf[0]) {
 case 'c': /* print the connection count */
 printf("Received %d conn. requests so far.\n", connectcnt);
 printf("server> ");
 fflush(stdout);
 break;
 case 'q': /* terminate the server */
 notdone = 0;
 break;
 default: /* bad input */
 printf("ERROR: unknown command\n");
 printf("server> ");
 fflush(stdout);
 }
 }

F10 – 13 – Systemprogrammering 2007

select Example (cont)

Next we check for a pending connection request.Next we check for a pending connection request.

 /* if a connection request has arrived, process it */
 if (FD_ISSET(listenfd, &readfds)) {
 connfd = Accept(listenfd,
 (struct sockaddr *) &clientaddr, &clientlen);
 connectcnt++;

 bzero(buf, BUFSIZE);
 Rio_readn(connfd, buf, BUFSIZE);
 Rio_writen(connfd, buf, strlen(buf));
 Close(connfd);
 }
} /* while */

F10 – 14 – Systemprogrammering 2007

Event-based Concurrent Echo Server
/*
 * echoservers.c - A concurrent echo server based on select
 */
#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
 int maxfd; /* largest descriptor in read_set */
 fd_set read_set; /* set of all active descriptors */
 fd_set ready_set; /* subset of descriptors ready for reading */
 int nready; /* number of ready descriptors from select */
 int maxi; /* highwater index into client array */
 int clientfd[FD_SETSIZE]; /* set of active descriptors */
 rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */
} pool;

void init_pool(int listenfd, pool *p);
void add_clent(int connfd, pool *p);
void check_clients(pool *p);

int byte_cnt = 0; /* counts total bytes received by server */

F10 – 15 – Systemprogrammering 2007

Event-based Concurrent Server (cont)
int main(int argc, char **argv)
{
 int listenfd, connfd, clientlen;
 struct sockaddr_in clientaddr;
 static pool pool;

 if (argc != 2) {

fprintf(stderr, “usage: %s <port>\n”, argv[0]);
 exit(0);
 }
 port = atoi(argv[1]);
 listenfd = Open_listenfd(port);
 init_pool(listenfd, &pool);
 while (1) {
 pool.ready_set = pool.read_set;
 pool.nready = Select(pool.maxfd+1, &pool.ready_set,
 NULL, NULL, NULL);
 if (FD_ISSET(listenfd, &pool.ready_set)) {

 clientlen = sizeof(struct sockaddr_in);
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
 add_client(connfd, &pool);
 }
 check_clients(&pool);
 }
}

F10 – 16 – Systemprogrammering 2007

Event-based Concurrent Server (cont)

/* initialize the descriptor pool */
void init_pool(int listenfd, pool *p)
{
 /* Initially, there are no connected descriptors */
 int i;
 p->maxi = -1;
 for (i=0; i< FD_SETSIZE; i++)
 p->clientfd[i] = -1;

 /* Initially, listenfd is only member of select read set */
 p->maxfd = listenfd;
 FD_ZERO(&p->read_set);
 FD_SET(listenfd, &p->read_set);
}

F10 – 17 – Systemprogrammering 2007

Event-based Concurrent Server (cont)
void add_client(int connfd, pool *p) /* add connfd to pool p */
{
 int i;
 p->nready--;

 for (i = 0; i < FD_SETSIZE; i++) /* Find available slot */
 if (p->clientfd[i] < 0) {
 p->clientfd[i] = connfd;
 Rio_readinitb(&p->clientrio[i], connfd);

 FD_SET(connfd, &p->read_set); /* Add desc to read set */

 if (connfd > p->maxfd) /* Update max descriptor num */
 p->maxfd = connfd;
 if (i > p->maxi) /* Update pool high water mark */
 p->maxi = i;
 break;
 }
 if (i == FD_SETSIZE) /* Couldn't find an empty slot */
 app_error("add_client error: Too many clients");
}

F10 – 18 – Systemprogrammering 2007

Event-based Concurrent Server (cont)
void check_clients(pool *p) { /* echo line from ready descs in pool p */
 int i, connfd, n;
 char buf[MAXLINE];
 rio_t rio;

 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
 connfd = p->clientfd[i];

 /* If the descriptor is ready, echo a text line from it */
 if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {

 rio = p->clientrio[i];
 p->nready--;
 if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 byte_cnt += n;
 Rio_writen(connfd, buf, n);
 }
 else {/* EOF detected, remove descriptor from pool */
 Close(connfd);
 FD_CLR(connfd, &p->read_set);
 p->clientfd[i] = -1;
 }
 }
 }
}

F10 – 19 – Systemprogrammering 2007

Pro and Cons of Event-Based Designs

+ One logical control flow.+ One logical control flow.

+ Can single-step with a debugger.+ Can single-step with a debugger.

+ No process or thread control overhead.+ No process or thread control overhead.
! Design of choice for high-performance Web servers and search

engines.

- Significantly more complex to code than process- or - Significantly more complex to code than process- or
thread-based designs.thread-based designs.

- Can be vulnerable to denial of service attack- Can be vulnerable to denial of service attack
! How?

Threads provide a middle ground between processes and I/O Threads provide a middle ground between processes and I/O
multiplexing...multiplexing...

F10 – 20 – Systemprogrammering 2007

Traditional View of a Process

Process = process context + code, data, and stackProcess = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

F10 – 21 – Systemprogrammering 2007

Alternate View of a Process

Process = thread + code, data, and kernel contextProcess = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write dataThread context:
 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)

 Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:

 VM structures

 Descriptor table

 brk pointer

F10 – 22 – Systemprogrammering 2007

A Process With Multiple Threads
Multiple threads can be associated with a processMultiple threads can be associated with a process

! Each thread has its own logical control flow (sequence of PC

values)
! Each thread shares the same code, data, and kernel context
! Each thread has its own thread id (TID)

Thread 1 context:
 Data registers

 Condition codes

 SP1

 PC1

 Shared code and data

shared libraries

run-time heap

0

read/write data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Thread 2 context:
 Data registers

 Condition codes

 SP2

 PC2

stack 2

Thread 2 (peer thread)

F10 – 23 – Systemprogrammering 2007

Logical View of Threads

Threads associated with a process form a pool of peers.Threads associated with a process form a pool of peers.
! Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data

and kernel context

F10 – 24 – Systemprogrammering 2007

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if their logical Two threads run concurrently (are concurrent) if their logical

flows overlap in time.flows overlap in time.

Otherwise, they are sequential. Otherwise, they are sequential.

Examples:Examples:
! Concurrent: A & B, A&C

! Sequential: B & C
Time

Thread A Thread B Thread C

F10 – 25 – Systemprogrammering 2007

Threads vs. Processes

How threads and processes are similarHow threads and processes are similar
! Each has its own logical control flow.
! Each can run concurrently.
! Each is context switched.

How threads and processes are differentHow threads and processes are different
! Threads share code and data, processes (typically) do not.
! Threads are somewhat less expensive than processes.

"Process control (creating and reaping) is twice as expensive as thread

control.

"Linux/Pentium III numbers:

» ~20K cycles to create and reap a process.

» ~10K cycles to create and reap a thread.

F10 – 26 – Systemprogrammering 2007

Posix Threads (Pthreads) Interface

Pthreads:Pthreads: Standard interface for ~60 functions that Standard interface for ~60 functions that

manipulate threads from C programs.manipulate threads from C programs.
! Creating and reaping threads.

"pthread_create
"pthread_join

! Determining your thread ID
"pthread_self

! Terminating threads
"pthread_cancel
"pthread_exit

"exit [terminates all threads] , ret [terminates current thread]
! Synchronizing access to shared variables

"pthread_mutex_init
"pthread_mutex_[un]lock
"pthread_cond_init
"pthread_cond_[timed]wait

F10 – 27 – Systemprogrammering 2007

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

return value

(void **p)

F10 – 28 – Systemprogrammering 2007

Execution of Threaded“hello, world”

main thread

peer thread

return NULL;main thread waits for

peer thread to terminate

exit()

terminates

main thread and

any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread

terminates)

Pthread_create() returns

F10 – 29 – Systemprogrammering 2007

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)
{
 int listenfd, *connfdp, port, clientlen;
 struct sockaddr_in clientaddr;
 pthread_t tid;

 if (argc != 2) {
 fprintf(stderr, "usage: %s <port>\n", argv[0]);
 exit(0);
 }
 port = atoi(argv[1]);

 listenfd = open_listenfd(port);
 while (1) {
 clientlen = sizeof(struct sockaddr_in);
 connfdp = Malloc(sizeof(int));
 *connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 Pthread_create(&tid, NULL, thread, connfdp);
 }
}

F10 – 30 – Systemprogrammering 2007

Thread-Based Concurrent Server (cont)

* thread routine */
void *thread(void *vargp)
{
 int connfd = *((int *)vargp);

 Pthread_detach(pthread_self());
 Free(vargp);

 echo_r(connfd); /* reentrant version of echo() */
 Close(connfd);
 return NULL;
}

F10 – 31 – Systemprogrammering 2007

Issues With Thread-Based Servers

Must run “detached” to avoid memory leak.Must run “detached” to avoid memory leak.
! At any point in time, a thread is either joinable or detached.
! Joinable thread can be reaped and killed by other threads.

"must be reaped (with pthread_join) to free memory resources.
! Detached thread cannot be reaped or killed by other threads.

" resources are automatically reaped on termination.
! Default state is joinable.

"use pthread_detach(pthread_self()) to make detached.

Must be careful to avoid unintended sharing.Must be careful to avoid unintended sharing.
! For example, what happens if we pass the address of connfd to the

thread routine?
"Pthread_create(&tid, NULL, thread, (void *)&connfd);

All functions called by a thread must be All functions called by a thread must be thread-safethread-safe
! (next lecture)

F10 – 32 – Systemprogrammering 2007

Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads+ Easy to share data structures between threads
! e.g., logging information, file cache.

+ Threads are more efficient than processes.+ Threads are more efficient than processes.

--- Unintentional sharing can introduce subtle and hard-to---- Unintentional sharing can introduce subtle and hard-to-

reproduce errors!reproduce errors!
! The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads.

! (next lecture)

