
Systemprogrammering 2007
Föreläsning 2

Exceptional Control Flow
Part I

TopicsTopics
� Exceptions
� Process context switches
� Creating and destroying processes

F2 – 2 – Systemprogrammering 2007

Control Flow

<startup>

inst1

inst2

inst3

…

instn

<shutdown>

Computers do Only One ThingComputers do Only One Thing
� From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time.

� This sequence is the system’s physical control flow (or flow of

control).
Physical control flow

Time

F2 – 3 – Systemprogrammering 2007

Altering the Control Flow
Up to Now: two mechanisms for changing control flow:Up to Now: two mechanisms for changing control flow:

� Jumps and branches

� Call and return using the stack discipline.

� Both react to changes in program state.

Insufficient for a useful systemInsufficient for a useful system
� Difficult for the CPU to react to changes in system state.

�data arrives from a disk or a network adapter.

� Instruction divides by zero

�User hits ctl-c at the keyboard

�System timer expires

System needs mechanisms for “ exceptional control flow”System needs mechanisms for “ exceptional control flow”

F2 – 4 – Systemprogrammering 2007

 Exceptional Control Flow
� Mechanisms for exceptional control flow exists at all levels of a

computer system.

Low level MechanismLow level Mechanism
� exceptions

� change in control flow in response to a system event (i.e., change in

system state)
� Combination of hardware and OS software

Higher Level MechanismsHigher Level Mechanisms
� Process context switch
� Signals
� Nonlocal jumps (setjmp/longjmp)
� Implemented by either:

�OS software (context switch and signals).

�C language runtime library: nonlocal jumps.

F2 – 5 – Systemprogrammering 2007

System context for exceptions

Local/IO Bus

Memory
Network

adapter
IDE disk

controller

Video

adapter

Display Network

Processor
Interrupt

controller

SCSI

controller

SCSI bus

Serial port

controller

Parallel port

controller

Keyboard

controller

Keyboard Mouse PrinterModem

disk

disk CDROM

F2 – 6 – Systemprogrammering 2007

Exceptions

An An exceptionexception is a transfer of control to the OS in response to is a transfer of control to the OS in response to

some some eventevent (i.e., change in processor state) (i.e., change in processor state)

User Process OS

exception
exception processing
by exception handler

exception
return (optional)

event current
next

F2 – 7 – Systemprogrammering 2007

Interrupt Vectors

� Each type of event has a

unique exception number k

� Index into jump table (a.k.a.,

interrupt vector)

� Jump table entry k points to a

function (exception handler).

� Handler k is called each time

exception k occurs.

interrupt
vector

0
1
2 ...

n-1

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

F2 – 8 – Systemprogrammering 2007

 Asynchronous Exceptions (Interrupts)

Caused by events external to the processorCaused by events external to the processor
� Indicated by setting the processor’s interrupt pin

� handler returns to “ next” instruction.

Examples:Examples:
� I/O interrupts

�hitting ctl-c at the keyboard
�arrival of a packet from a network
�arrival of a data sector from a disk

� Hard reset interrupt
�hitting the reset button

� Soft reset interrupt
�hitting ctl-alt-delete on a PC

F2 – 9 – Systemprogrammering 2007

 Synchronous Exceptions
Caused by events that occur as a result of executing an Caused by events that occur as a result of executing an

instruction:instruction:
� Traps

� Intentional
�Examples: system calls, breakpoint traps, special instructions

�Returns control to “ next” instruction
� Faults

�Can sometimes be masked out so that they are ignored

�Unintentional but possibly recoverable

�Examples: page faults (recoverable), protection faults (unrecoverable).

�Either re-executes faulting (“ current”) instruction or aborts.
� Aborts

�unintentional and unrecoverable

�Examples: parity error, machine check.
�Aborts current program

F2 – 10 – Systemprogrammering 2007

 Trap Example

Open file

User Process OS

exception

return

int
pop

Opening a FileOpening a File

� User calls open(filename, options)

� Function open executes system call instruction int

� OS must find or create file, get it ready for reading or writing

� Returns integer file descriptor

0804d070 <__libc_open>:
 . . .
 804d082: cd 80 int $0x80
 804d084: 5b pop %ebx
 . . .

F2 – 11 – Systemprogrammering 2007

 Fault Example #1

User Process OS

page fault
Create page and load
into memoryreturn

event movl

Memory ReferenceMemory Reference
� User writes to memory location
� That portion (page) of user’s memory is

currently on disk

� Page handler must load page into

physical memory
� Returns to faulting instruction
� Successful on second try

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

F2 – 12 – Systemprogrammering 2007

 Fault Example #2

User Process OS

page fault

Detect invalid address
event movl

Memory ReferenceMemory Reference
� User writes to memory location
� Address is not valid

� Page handler detects invalid address
� Sends SIGSEG signal to user process
� User process exits with “ segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Signal process

F2 – 13 – Systemprogrammering 2007

 Processes

Def: A Def: A processprocess is an instance of a running program. is an instance of a running program.
� One of the most profound ideas in computer science.

� Not the same as “ program” or “ processor”

Process provides each program with two key abstractions:Process provides each program with two key abstractions:
� Logical control flow

�Each program seems to have exclusive use of the CPU.

� Private address space
�Each program seems to have exclusive use of main memory.

How are these Illusions maintained?How are these Illusions maintained?
� Process executions interleaved (multitasking)

� Address spaces managed by virtual memory system

F2 – 14 – Systemprogrammering 2007

Logical Control Flows

Time

Process A Process B Process C

Each process has its own logical control flow

F2 – 15 – Systemprogrammering 2007

Concurrent Processes

Two processes Two processes run concurrentlyrun concurrently ((are concurrent)are concurrent) if their if their

flows overlap in time.flows overlap in time.

Otherwise, they are Otherwise, they are sequential.sequential.

Examples:Examples:
� Concurrent: A & B, A & C
� Sequential: B & C

Time

Process A Process B Process C

F2 – 16 – Systemprogrammering 2007

User View of Concurrent Processes

Control flows for concurrent processes are physically Control flows for concurrent processes are physically

disjoint in time.disjoint in time.

However, we can think of concurrent processes as running However, we can think of concurrent processes as running

in parallel with each other.in parallel with each other.

Process A Process B Process C

Time

F2 – 17 – Systemprogrammering 2007

 Context Switching

Processes are managed by a shared chunk of OS code Processes are managed by a shared chunk of OS code

called the called the kernelkernel
� Important: the kernel is not a separate process, but rather runs as

part of some user process

Control flow passes from one process to another via a Control flow passes from one process to another via a

context switch.context switch.

context switch

Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time

context switch

F2 – 18 – Systemprogrammering 2007

Private Address Spaces
IA32 (X86)

Each process has its own private address space.Each process has its own private address space.

kernel virtual memory

(code, data, heap, stack)

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

0

%esp (stack pointer)

memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

unused

read/write segment

(.data, .bss)
read-only segment

(.init, .text, .rodata)

loaded from the

executable file

0xffffffff

F2 – 19 – Systemprogrammering 2007

fork: Creating new processes

int fork(void)int fork(void)
� creates a new process (child process) that is identical to the

calling process (parent process)

� returns 0 to the child process

� returns child’s pid to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting

(and often confusing)

because it is called

once but returns twice

F2 – 20 – Systemprogrammering 2007

Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {

printf("Child has x = %d\n", ++x);
 } else {

printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

Key PointsKey Points
� Parent and child both run same code

�Distinguish parent from child by return value from fork
� Start with same state, but each has private copy

� Including shared output file descriptor

�Relative ordering of their print statements undefined

F2 – 21 – Systemprogrammering 2007

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

Key PointsKey Points
� Both parent and child can continue forking

L0 L1

L1

Bye
Bye

Bye
Bye

F2 – 22 – Systemprogrammering 2007

Fork Example #3

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

Key PointsKey Points
� Both parent and child can continue forking

L1 L2

L2

Bye
Bye

Bye
Bye

L1 L2

L2

Bye
Bye

Bye
Bye

L0

F2 – 23 – Systemprogrammering 2007

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {
 printf("L2\n");
 fork();
}

 }
 printf("Bye\n");
}

Key PointsKey Points
� Both parent and child can continue forking

L0 L1

Bye

L2

Bye

Bye
Bye

F2 – 24 – Systemprogrammering 2007

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {
 printf("L2\n");
 fork();
}

 }
 printf("Bye\n");
}

Key PointsKey Points
� Both parent and child can continue forking

L0 Bye

L1

Bye

Bye

Bye

L2

F2 – 25 – Systemprogrammering 2007

exit: Destroying Process

void exit(int status)void exit(int status)
� exits a process

�Normally return with status 0

� atexit() registers functions to be executed upon exit

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

F2 – 26 – Systemprogrammering 2007

Zombies
IdeaIdea

� When process terminates, still consumes system resources
�Various tables maintained by OS

� Called a “ zombie”
�Living corpse, half alive and half dead

ReapingReaping
� Performed by parent on terminated child
� Parent is given exit status information
� Kernel discards process

What if Parent Doesn’t Reap?What if Parent Doesn’t Reap?
� If any parent terminates without reaping a child, then child will be

reaped by init process
� Only need explicit reaping for long-running processes

�E.g., shells and servers

F2 – 27 – Systemprogrammering 2007

> ./fork7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 fork7
 6640 ttyp9 00:00:00 fork7 <defunct>
 6641 ttyp9 00:00:00 ps
> kill 6639
[1] Terminated
> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie
Example

� ps shows child process

as “ defunct”

� Killing parent allows

child to be reaped

void fork7()
{
 if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",
 getpid());
exit(0);

 } else {
printf("Running Parent, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 }
}

F2 – 28 – Systemprogrammering 2007

> ./fork8
Terminating Parent, PID = 6675
Running Child, PID = 6676
> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 fork8
 6677 ttyp9 00:00:00 ps
> kill 6676
> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Nonterminating
Child
Example

� Child process still active even

though parent has terminated

� Must kill explicitly, or else will

keep running indefinitely

void fork8()
{
 if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 } else {
printf("Terminating Parent, PID = %d\n",
 getpid());
exit(0);

 }
}

F2 – 29 – Systemprogrammering 2007

wait: Synchronizing with children

int wait(int *child_status)int wait(int *child_status)
� suspends current process until one of its children terminates

� return value is the pid of the child process that terminated

� if child_status != NULL, then the object it points to will be set

to a status indicating why the child process terminated

F2 – 30 – Systemprogrammering 2007

wait: Synchronizing with children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

F2 – 31 – Systemprogrammering 2007

Wait Example
� If multiple children completed, will take in arbitrary order
� Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status

void fork10()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminate abnormally\n", wpid);

 }
}

F2 – 32 – Systemprogrammering 2007

Waitpid
� waitpid(pid, &status, options)

�Can wait for specific process

�Various options

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminated abnormally\n", wpid);

 }

F2 – 33 – Systemprogrammering 2007

Wait/Waitpid Example Outputs

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

Using wait (fork10)

Using waitpid (fork11)

F2 – 34 – Systemprogrammering 2007

exec: Running new programs
int execl(char *path, char *arg0, char *arg1, …, 0)int execl(char *path, char *arg0, char *arg1, …, 0)

� loads and runs executable at path with args arg0, arg1, …
�path is the complete path of an executable

�arg0 becomes the name of the process

» typically arg0 is either identical to path, or else it contains only

the executable filename from path
� “ real” arguments to the executable start with arg1, etc.

� list of args is terminated by a (char *)0 argument
� returns -1 if error, otherwise doesn’t return!

main() {
 if (fork() == 0) {
 execl("/usr/bin/cp", "cp", "foo", "bar", NULL);
 }
 wait(NULL);
 printf("copy completed\n");
 exit();
}

F2 – 35 – Systemprogrammering 2007

Summarizing

ExceptionsExceptions
� Events that require nonstandard control flow

� Generated externally (interrupts) or internally (traps and faults)

ProcessesProcesses
� At any given time, system has multiple active processes

� Only one can execute at a time, though

� Each process appears to have total control of processor + private

memory space

F2 – 36 – Systemprogrammering 2007

Summarizing (cont.)
Spawning ProcessesSpawning Processes

� Call to fork
�One call, two returns

Terminating ProcessesTerminating Processes
� Call exit

�One call, no return

Reaping ProcessesReaping Processes
� Call wait or waitpid

Replacing Program Executed by ProcessReplacing Program Executed by Process
� Call execl (or variant)

�One call, (normally) no return

