
Systemprogrammering 2007
Föreläsning 4

Virtual Memory

TopicsTopics
� The memory hierarchy

� Motivations for VM

� Address translation

� Accelerating translation with TLBs

F4 – 2 – Systemprogrammering 2007

Random-Access Memory (RAM)

Key featuresKey features
� RAM is packaged as a chip.
� Basic storage unit is a cell (one bit per cell).
� Multiple RAM chips form a memory.

Static RAM (Static RAM (SRAMSRAM))
� Each cell stores bit with a six-transistor circuit.
� Retains value indefinitely, as long as it is kept powered.
� Relatively insensitive to disturbances such as electrical noise.
� Faster and more expensive than DRAM.

Dynamic RAM (Dynamic RAM (DRAMDRAM))
� Each cell stores bit with a capacitor and transistor.
� Value must be refreshed every 10-100 ms.
� Sensitive to disturbances.
� Slower and cheaper than SRAM.

F4 – 3 – Systemprogrammering 2007

 The CPU-Memory Gap

 The increasing gap between DRAM, disk, and CPU speeds.The increasing gap between DRAM, disk, and CPU speeds.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1980 1985 1990 1995 2000

year

ns

Disk seek time

DRAM access time

SRAM access time

CPU cycle time

F4 – 4 – Systemprogrammering 2007

 Locality
Principle of Locality:Principle of Locality:

� Programs tend to reuse data and instructions near those they have
used recently, or that were recently referenced themselves.

� Temporal locality: Recently referenced items are likely to be
referenced in the near future.

� Spatial locality: Items with nearby addresses tend to be
referenced close together in time.

Locality Example:
• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:
• Instructions

– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality
Temporal locality

Temporal locality

F4 – 5 – Systemprogrammering 2007

 Memory Hierarchies

Some fundamental and enduring properties of hardware and Some fundamental and enduring properties of hardware and

software:software:
� Fast storage technologies cost more per byte and have less

capacity.
� The gap between CPU and main memory speed is widening.
� Well-written programs tend to exhibit good locality.

These fundamental properties complement each other These fundamental properties complement each other

beautifully.beautifully.

They suggest an approach for organizing memory and They suggest an approach for organizing memory and

storage systems known as a storage systems known as a memory hierarchymemory hierarchy..

F4 – 6 – Systemprogrammering 2007

 An Example Memory Hierarchy

registers

on-chip L1

cache (SRAM)

main memory

(DRAM)

local secondary storage

(local disks)

Larger,

slower,

and

cheaper

(per byte)

storage

devices
remote secondary storage

(distributed file systems, Web servers)

Local disks hold files

retrieved from disks on

remote network servers.

Main memory holds disk

blocks retrieved from local

disks.

off-chip L2

cache (SRAM)

L1 cache holds cache lines retr ieved

from the L2 cache memory.

CPU registers hold words retrieved from

L1 cache.

L2 cache holds cache lines retr ieved

from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and

costlier

(per byte)

storage

devices

F4 – 7 – Systemprogrammering 2007

Caches
Cache:Cache: A smaller, faster storage device that acts as a A smaller, faster storage device that acts as a

staging area for a subset of the data in a larger, slower staging area for a subset of the data in a larger, slower
device.device.

Fundamental idea of a memory hierarchy:Fundamental idea of a memory hierarchy:
� For each k, the faster, smaller device at level k serves as a cache

for the larger, slower device at level k+1.

Why do memory hierarchies work?Why do memory hierarchies work?
� Programs tend to access the data at level k more often than they

access the data at level k+1.
� Thus, the storage at level k+1 can be slower, and thus larger and

cheaper per bit.
� Net effect: A large pool of memory that costs as much as the

cheap storage near the bottom, but that serves data to programs at
the rate of the fast storage near the top.

F4 – 8 – Systemprogrammering 2007

 General Caching Concepts

Types of cache misses:Types of cache misses:
� Cold (compulsary) miss

�Cold misses occur because the cache is empty.
� Conflict miss

�Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.

�E.g. Block i at level k+1 must be placed in block (i mod 4) at level k+1.

�Conflict misses occur when the level k cache is large enough, but

multiple data objects all map to the same level k block.
�E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

� Capacity miss
�Occurs when the set of active cache blocks (working set) is larger than

the cache.

F4 – 9 – Systemprogrammering 2007

Examples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress
translations

TLB

Web
browser

10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

32-byte block

32-byte block

4-byte word

What Cached

Web proxy
server

1,000,000,000Remote server
disks

OS100Main memory

Hardware1On-Chip L1

Hardware10Off-Chip L2

AFS/NFS
client

10,000,000Local disk

Hardware +
OS

100Main memory

Compiler0 CPU registers

Managed ByLatency
(cycles)

Where Cached

F4 – 10 – Systemprogrammering 2007

Motivations for Virtual Memory

Use Physical DRAM as a Cache for the DiskUse Physical DRAM as a Cache for the Disk
� Address space of a process can exceed physical memory size
� Sum of address spaces of multiple processes can exceed physical

memory

Simplify Memory ManagementSimplify Memory Management
� Multiple processes resident in main memory.

�Each process with its own address space
� Only “ active” code and data is actually in memory

�Allocate more memory to process as needed.

Provide ProtectionProvide Protection
� One process can’t interfere with another.

�because they operate in different address spaces.
� User process cannot access privileged information

�different sections of address spaces have different permissions.

F4 – 11 – Systemprogrammering 2007

Motivation #1: DRAM a “ Cache” for Disk

Full address space is quite large:Full address space is quite large:
� 32-bit addresses: ~4,000,000,000 (4 billion) bytes
� 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~300X cheaper than DRAM storageDisk storage is ~300X cheaper than DRAM storage
� 80 GB of DRAM: ~ $33,000
� 80 GB of disk: ~ $110

To access large amounts of data in a cost-effective manner, the To access large amounts of data in a cost-effective manner, the

bulk of the data must be stored on diskbulk of the data must be stored on disk

1GB: ~$200
80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM

F4 – 12 – Systemprogrammering 2007

 A System with Physical Memory Only
Examples:Examples:

� most Cray machines, early PCs, nearly all embedded systems, etc.

� Addresses generated by the CPU correspond directly to bytes in physical

memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

F4 – 13 – Systemprogrammering 2007

 A System with Virtual Memory

Examples:Examples:
� workstations, servers, modern PCs, etc.

� Address Translation: Hardware converts virtual addresses to physical

addresses via OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

F4 – 14 – Systemprogrammering 2007

 Page Faults (like “ Cache Misses”)

What if an object is on disk rather than in memory?What if an object is on disk rather than in memory?
� Page table entry indicates virtual address not in memory

� OS exception handler invoked to move data from disk into memory
� current process suspends, others can resume

�OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

F4 – 15 – Systemprogrammering 2007

 Servicing a Page Fault

Processor Signals ControllerProcessor Signals Controller
� Read block of length P starting at

disk address X and store starting

at memory address Y

Read OccursRead Occurs
� Direct Memory Access (DMA)

� Under control of I/O controller

I / O Controller Signals I / O Controller Signals

CompletionCompletion
� Interrupt processor

� OS resumes suspended process

diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller

Reg

(2) DMA

Transfer

(1) Initiate Block Read

(3) Read

Done

F4 – 16 – Systemprogrammering 2007

 Motivation #2: Memory Management

Multiple processes can reside in physical memory.Multiple processes can reside in physical memory.

How do we resolve address conflicts?How do we resolve address conflicts?
� what if two processes access something at the same address?

kernel virtual memory

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to

 user code

the “ brk” ptr

Linux/x86
process

memory

image

F4 – 17 – Systemprogrammering 2007

Virtual

Address

Space for

Process 1:

Physical

Address

Space

(DRAM)

VP 1
VP 2

PP 2

Address Translation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only

library code)

 Solution: Separate Virt. Addr. Spaces

� Virtual and physical address spaces divided into equal-sized blocks

� blocks are called “ pages” (both virtual and physical)

� Each process has its own virtual address space

�operating system controls how virtual pages as assigned to physical

memory

...

...

Virtual

Address

Space for

Process 2:

F4 – 18 – Systemprogrammering 2007

 Motivation #3: Protection
Page table entry contains access rights informationPage table entry contains access rights information

� hardware enforces this protection (trap into OS if violation occurs)

Page Tables

Process i:

Physical AddrRead? Write?

 PP 9Yes No

 PP 4Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?
 PP 6Yes Yes

 PP 9Yes No

XXXXXXX No No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

F4 – 19 – Systemprogrammering 2007

 VM Address Translation

Virtual Address SpaceVirtual Address Space
� V = {0, 1, …, N–1}

Physical Address SpacePhysical Address Space
� P = {0, 1, …, M–1}

� M < N (usually)

Address TranslationAddress Translation
� MAP: V → P U {∅}

� For virtual address a:

�MAP(a) = a’ if data at virtual address a at physical address a’ in P

�MAP(a) = ∅ if data at virtual address a not in physical memory

» Either invalid or stored on disk

F4 – 20 – Systemprogrammering 2007

p–1p

virtual page number page offset virtual address

physical page number page offset physical address

0p–1

address translation

pm–1

n–1 0

Page offset bits don’t change as a result of translation

VM Address Translation
ParametersParameters

� P = 2p = page size (bytes).
� N = 2n = Virtual address limit
� M = 2m = Physical address limit

F4 – 21 – Systemprogrammering 2007

Page Tables
Memory resident

page table
(physical page

 or disk address) Physical Memory

Disk Storage

(swap file or

regular file system file)

Valid

1
1

1
1
1

1

1
0

0

0

Virtual Page

Number

F4 – 22 – Systemprogrammering 2007

Address Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts as

table index

F4 – 23 – Systemprogrammering 2007

Page Table Operation

TranslationTranslation
� Separate (set of) page table(s) per process
� VPN forms index into page table (points to a page table entry)

Computing Physical AddressComputing Physical Address
� Page Table Entry (PTE) provides information about page

if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address
if (valid bit = 0) then the page is on disk
» Page fault

Checking ProtectionChecking Protection
� Access rights field indicate allowable access

» e.g., read-only, read-write, execute-only
» typically support multiple protection modes (e.g., kernel vs. user)

� Protection violation fault if user doesn’t have necessary permission

F4 – 24 – Systemprogrammering 2007

CPU
Trans-

lation
Cache

Main

Memory

VA PA miss

hit
data

Integrating VM and Cache

Most Caches “ Physically Addressed”Most Caches “ Physically Addressed”
� Accessed by physical addresses
� Allows multiple processes to have blocks in cache at same time
� Allows multiple processes to share pages
� Cache doesn’t need to be concerned with protection issues

�Access rights checked as part of address translation

Perform Address Translation Before Cache LookupPerform Address Translation Before Cache Lookup
� But this could involve a memory access itself (of the PTE)
� Of course, page table entries can also become cached

F4 – 25 – Systemprogrammering 2007

CPU
TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Trans-

lation

hit

miss

 Speeding up Translation with a TLB

““ Translation Lookaside Buffer” (TLB)Translation Lookaside Buffer” (TLB)
� Small hardware cache in MMU
� Maps virtual page numbers to physical page numbers
� Contains complete page table entries for small number of pages

F4 – 26 – Systemprogrammering 2007

 Address Translation with a TLB

virtual addressvirtual page number page offset

physical address

n–1 0p–1p

valid physical page numbertag

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

TLB

Cache

. ..

F4 – 27 – Systemprogrammering 2007

Simple Memory System Example

AddressingAddressing
� 14-bit virtual addresses
� 12-bit physical address
� Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

F4 – 28 – Systemprogrammering 2007

Simple Memory System Page Table

� Only show first 16 entries

110D0D0F0F00––0707

1111110E0E00––0606

112D2D0D0D1116160505

00––0C0C00––0404

00––0B0B1102020303

1109090A0A1133330202

111717090900––0101

11131308081128280000

ValidValidPPNPPNVPNVPNValidValidPPNPPNVPNVPN

F4 – 29 – Systemprogrammering 2007

Simple Memory System TLB

TLBTLB
� 16 entries
� 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00––02021134340A0A110D0D030300––070733

00––030300––060600––080800––020222

00––0A0A00––040400––0202112D2D030311

110202070700––0000110D0D090900––030300

ValidValidPPNPPNTagTagValidValidPPNPPNTagTagValidValidPPNPPNTagTagValidValidPPNPPNTagTagSetSet

F4 – 30 – Systemprogrammering 2007

Simple Memory System Cache
CacheCache

� 16 lines
� 4-byte line size
� Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––––––001414FF0303DFDFC2C2111111161677

D3D31B1B77778383111313EE––––––––00313166

1515343496960404111616DD1D1DF0F072723636110D0D55

––––––––001212CC09098F8F6D6D434311323244

––––––––000B0BBB––––––––00363633

3B3BDADA15159393112D2DAA0808040402020000111B1B22

––––––––002D2D99––––––––00151511

8989515100003A3A11242488111123231111999911191900

B3B3B2B2B1B1B0B0ValidValidTagTagIdxIdxB3B3B2B2B1B1B0B0ValidValidTagTagIdxIdx

F4 – 31 – Systemprogrammering 2007

Address Translation Example #1

Virtual Address Virtual Address 0x03D40x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

F4 – 32 – Systemprogrammering 2007

Address Translation Example #2

Virtual Address Virtual Address 0x038F0x038F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

F4 – 33 – Systemprogrammering 2007

Address Translation Example #3
Virtual Address Virtual Address 0x00400x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

F4 – 34 – Systemprogrammering 2007

Multi-Level Page Tables

Given:Given:
� 4KB (212) page size
� 32-bit address space
� 4-byte PTE

Problem:Problem:
� Would need a 4 MB page table!

�220 *4 bytes

Common solutionCommon solution
� multi-level page tables
� e.g., 2-level table (P6)

�Level 1 table: 1024 entries, each of which

points to a Level 2 page table.

�Level 2 table: 1024 entries, each of

which points to a page

Level 1

Table

...

Level 2

Tables

10 10 12

F4 – 35 – Systemprogrammering 2007

Main Themes
Programmer’s ViewProgrammer’s View

� Large “ flat” address space
�Can allocate large blocks of contiguous addresses

� Process “ owns” machine
�Has private address space

�Unaffected by behavior of other processes

System ViewSystem View
� User virtual address space created by mapping to set of pages

�Need not be contiguous
�Allocated dynamically
�Enforce protection during address translation

� OS manages many processes simultaneously
�Continually switching among processes
�Especially when one must wait for resource

» E.g., disk I/O to handle page fault

