
Systemprogrammering 2007
Föreläsning 6

Dynamic Memory Allocation

TopicsTopics
� Simple explicit allocators

�Data structures

�Mechanisms

�Policies

� Explicit doubly-linked free list

� Segregated free lists

� Garbage collection

� Memory-related perils and pitfalls

F6 – 2 – Systemprogrammering 2007

Harsh Reality
Memory Matters!Memory Matters!

Memory is not unboundedMemory is not unbounded
� It must be allocated and managed
� Many applications are memory dominated

�Especially those based on complex, graph algorithms

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
� Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform
� Cache and virtual memory effects can greatly affect program

performance
� Adapting program to characteristics of memory system can lead to

major speed improvements

F6 – 3 – Systemprogrammering 2007

Dynamic Memory Allocation

Explicit vs. Implicit Memory AllocatorExplicit vs. Implicit Memory Allocator
� Explicit: application allocates and frees space

� E.g., malloc and free in C
� Implicit: application allocates, but does not free space

� E.g. garbage collection in Java, ML or Lisp

AllocationAllocation
� In both cases the memory allocator provides an abstraction of memory

as a set of blocks
� Doles out free memory blocks to application

Application

Dynamic Memory Allocator

Heap Memory

F6 – 4 – Systemprogrammering 2007

Process Memory Image

kernel virtual memory

Memory mapped region for

shared libraries

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%esp

memory invisible to

 user code

the “brk” ptr

Allocators request

additional heap memory

from the operating system

using the sbrk function.

F6 – 5 – Systemprogrammering 2007

Malloc Package

#include <stdlib.h>#include <stdlib.h>
void *malloc(size_t size)void *malloc(size_t size)

� If successful:
� Returns a pointer to a memory block of at least size bytes, (typically) aligned to

8-byte boundary.
� If size == 0, returns NULL

� If unsuccessful: returns NULL (0) and sets errno.

void free(void *p)void free(void *p)
� Returns the block pointed at by p to pool of available memory
� p must come from a previous call to malloc or realloc.

void *realloc(void *p, size_t size)void *realloc(void *p, size_t size)
� Changes size of block p and returns pointer to new block.
� Contents of new block unchanged up to min of old and new size.

F6 – 6 – Systemprogrammering 2007

Malloc Example

void foo(int n, int m) {
 int i, *p;

 /* allocate a block of n ints */
 if ((p = (int *) malloc(n * sizeof(int))) == NULL) {
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++)
 p[i] = i;

 /* add m ints to end of p block */
 if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) {
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++)
 p[i] = i;

 /* print new array */
 for (i=0; i<n+m; i++)
 printf("%d\n", p[i]);

 free(p); /* return p to available memory pool */
}

F6 – 7 – Systemprogrammering 2007

Assumptions

Assumptions made in this lectureAssumptions made in this lecture
� Memory is word addressed (each word can hold a pointer)

Allocated block

(4 words)

Free block

(3 words)

Free word

Allocated word

F6 – 8 – Systemprogrammering 2007

Allocation Examples

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

F6 – 9 – Systemprogrammering 2007

Constraints
Applications:Applications:

� Can issue arbitrary sequence of allocation and free requests
� Free requests must correspond to an allocated block

AllocatorsAllocators
� Can’t control number or size of allocated blocks
� Must respond immediately to all allocation requests

�i.e., can’t reorder or buffer requests
� Must allocate blocks from free memory

�i.e., can only place allocated blocks in free memory
� Must align blocks so they satisfy all alignment requirements

�8 byte alignment for GNU malloc (libc malloc) on Linux boxes
� Can only manipulate and modify free memory
� Can’t move the allocated blocks once they are allocated

�i.e., compaction is not allowed

F6 – 10 – Systemprogrammering 2007

Goals of Good malloc/free

Primary goalsPrimary goals
� Good time performance for malloc and free

� Ideally should take constant time (not always possible)

�Should certainly not take linear time in the number of blocks
� Good space utilization

�User allocated structures should be large fraction of the heap.

�Want to minimize “ fragmentation” .

Some other goalsSome other goals
� Good locality properties

�Structures allocated close in time should be close in space
� “Similar” objects should be allocated close in space

� Robust
�Can check that free(p1) is on a valid allocated object p1
�Can check that memory references are to allocated space

F6 – 11 – Systemprogrammering 2007

Performance Goals: Throughput

Given some sequence of malloc and free requests:Given some sequence of malloc and free requests:
� R0, R1, ..., Rk, ... , Rn-1

Want to maximize throughput and peak memory utilization.Want to maximize throughput and peak memory utilization.
� These goals are often conflicting

Throughput:Throughput:
� Number of completed requests per unit time
� Example:

�5,000 malloc calls and 5,000 free calls in 10 seconds

�Throughput is 1,000 operations/second.

F6 – 12 – Systemprogrammering 2007

Performance Goals:
Peak Memory Utilization

Given some sequence of malloc and free requests:Given some sequence of malloc and free requests:
� R0, R1, ..., Rk, ... , Rn-1

Def: Aggregate payload PDef: Aggregate payload Pkk: :
� malloc(p) results in a block with a payload of p bytes..

� After request Rk has completed, the aggregate payload Pk is the sum

of currently allocated payloads.

Def: Current heap size is denoted by HDef: Current heap size is denoted by Hkk

� Assume that Hk is monotonically nondecreasing

Def: Peak memory utilization: Def: Peak memory utilization:
� After k requests, peak memory utilization is:

�Uk = (maxi<k Pi) / Hk

F6 – 13 – Systemprogrammering 2007

Internal Fragmentation

Poor memory utilization caused by Poor memory utilization caused by fragmentationfragmentation ..
� Comes in two forms: internal and external fragmentation

Internal fragmentationInternal fragmentation
� For some block, internal fragmentation is the difference between the block

size and the payload size.

� Caused by overhead of maintaining heap data structures, padding for
alignment purposes, or explicit policy decisions (e.g., not to split the
block).

� Depends only on the pattern of previous requests, and thus is easy to
measure.

block

payload
Internal

fragmentation
Internal

fragmentation

F6 – 14 – Systemprogrammering 2007

External Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) oops!

Occurs when there is enough aggregate heap memory, but no single

free block is large enough

External fragmentation depends on the pattern of future requests, and

thus is difficult to measure.

F6 – 15 – Systemprogrammering 2007

Implementation Issues
� How do we know how much memory to free just given a How do we know how much memory to free just given a

pointer?pointer?
� How do we keep track of the free blocks?How do we keep track of the free blocks?
� What do we do with the extra space when allocating a What do we do with the extra space when allocating a

structure that is smaller than the free block it is placed in?structure that is smaller than the free block it is placed in?
� How do we pick a block to use for allocation -- many might How do we pick a block to use for allocation -- many might

fit?fit?
� How do we reinsert freed block?How do we reinsert freed block?

p1 = malloc(1)

p0

free(p0)

F6 – 16 – Systemprogrammering 2007

Knowing How Much to Free
Standard methodStandard method

� Keep the length of a block in the word preceding the block.

�This word is often called the header field or header

� Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5

F6 – 17 – Systemprogrammering 2007

Keeping Track of Free Blocks

Method 1Method 1: : Implicit listImplicit list using lengths -- links all blocks using lengths -- links all blocks

Method 2Method 2: : Explicit listExplicit list among the free blocks using pointers among the free blocks using pointers
within the free blockswithin the free blocks

Method 3Method 3: : Segregated free listSegregated free list
� Different free lists for different size classes

Method 4Method 4: Blocks sorted by size: Blocks sorted by size
� Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

F6 – 18 – Systemprogrammering 2007

Method 1: Implicit List

Need to identify whether each block is free or allocatedNeed to identify whether each block is free or allocated
� Can use extra bit

� Bit can be put in the same word as the size if block sizes are

always multiples of two (mask out low order bit when reading

size).

size

1 word

Format of

allocated and

free blocks

payload

a = 1: allocated block

a = 0: free block

size: block size

payload: application data

(allocated blocks only)

a

optional

padding

F6 – 19 – Systemprogrammering 2007

Implicit List: Finding a Free Block

First fit:First fit:
� Search list from beginning, choose first free block that fits

� Can take linear time in total number of blocks (allocated and free)
� In practice it can cause “splinters” at beginning of list

Next fit:Next fit:
� Like first-fit, but search list from location of end of previous search
� Research suggests that fragmentation is worse

Best fit:Best fit:
� Search the list, choose the free block with the closest size that fits
� Keeps fragments small --- usually helps fragmentation
� Will typically run slower than first-fit

p = start;
while ((p < end) || \\ not passed end
 (*p & 1) || \\ already allocated
 (*p <= len)); \\ too small

F6 – 20 – Systemprogrammering 2007

Implicit List: Allocating in Free Block

Allocating in a free block - Allocating in a free block - splittingsplitting
� Since allocated space might be smaller than free space, we might

want to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // add 1 and round up
 int oldsize = *p & ~1; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 2)

F6 – 21 – Systemprogrammering 2007

Implicit List: Freeing a Block

Simplest implementation:Simplest implementation:
� Only need to clear allocated flag

 void free_block(ptr p) { *p = *p & -2}
� But can lead to “ false fragmentation”

There is enough free space, but the allocator won’t be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!

F6 – 22 – Systemprogrammering 2007

Implicit List: Coalescing

Join (Join (coelescecoelesce) with next and/or previous block if) with next and/or previous block if
they are freethey are free
� Coalescing with next block

� But how do we coalesce with previous block?

4 24 2

free(p) p
4 4 2

4

6

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

F6 – 23 – Systemprogrammering 2007

Implicit List: Bidirectional Coalescing
Boundary tagsBoundary tags [Knuth73] [Knuth73]

� Replicate size/allocated word at bottom of free blocks
� Allows us to traverse the “ list” backwards, but requires extra space
� Important and general technique!

a = 1: allocated block

a = 0: free block

size: total block size

payload: application data

(allocated blocks only)

4 4 4 4 6 46 4

1 word

size

Format of

allocated and

free blocks

payload and

padding

a

size aBoundary tag
(footer)

Header

Note! With right technique, footer only needed for free block

F6 – 24 – Systemprogrammering 2007

Constant Time Coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being

freed

Case 1 Case 2 Case 3 Case 4

F6 – 25 – Systemprogrammering 2007

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

F6 – 26 – Systemprogrammering 2007

m1 1

Constant Time Coalescing (Case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

F6 – 27 – Systemprogrammering 2007

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

F6 – 28 – Systemprogrammering 2007

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

F6 – 29 – Systemprogrammering 2007

Summary of Key Allocator Policies
Placement policy:Placement policy:

� First fit, next fit, best fit, etc.
� Trades off lower throughput for less fragmentation

� Interesting observation: segregated free lists approximate a best fit placement

policy without having to search entire free list.

Splitting policy:Splitting policy:
� When do we go ahead and split free blocks?
� How much internal fragmentation are we willing to tolerate?

Coalescing policy:Coalescing policy:
� Immediate coalescing: coalesce adjacent blocks each time free is called
� Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. e.g.,
� Coalesce as you scan the free list for malloc.
� Coalesce when the amount of external fragmentation reaches some threshold.

F6 – 30 – Systemprogrammering 2007

Implicit Lists: Summary

� Implementation: Implementation: very simplevery simple

� Allocate: Allocate: linear time worst caselinear time worst case

� Free: Free: constant time worst case -- even with coalescingconstant time worst case -- even with coalescing

� Memory usage: Memory usage: will depend on placement policywill depend on placement policy
� First fit, next fit or best fit

Not used in practice for malloc/free because of linear time Not used in practice for malloc/free because of linear time
allocate. Used in many special purpose applications.allocate. Used in many special purpose applications.

However, the concepts of splitting and boundary tag However, the concepts of splitting and boundary tag
coalescing are general to coalescing are general to allall allocators. allocators.

F6 – 31 – Systemprogrammering 2007

Keeping Track of Free Blocks

� Method 1Method 1: Implicit list using lengths -- links all blocks: Implicit list using lengths -- links all blocks

� Method 2Method 2: Explicit list among the free blocks using : Explicit list among the free blocks using
pointers within the free blockspointers within the free blocks

� Method 3Method 3: Segregated free lists: Segregated free lists
� Different free lists for different size classes

� Method 4Method 4: Blocks sorted by size (not discussed): Blocks sorted by size (not discussed)
� Can use a balanced tree (e.g. Red-Black tree) with pointers within

each free block, and the length used as a key

5 4 26

5 4 26

F6 – 32 – Systemprogrammering 2007

Explicit Free Lists

Use data space for link pointersUse data space for link pointers
� Typically doubly linked
� Still need boundary tags for coalescing

� It is important to realize that links are not necessarily in the same
order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

F6 – 33 – Systemprogrammering 2007

Allocating From Explicit Free Lists

free block

pred succ

free block

pred succ

Before:

After:

(with splitting)

F6 – 34 – Systemprogrammering 2007

Freeing With Explicit Free Lists

Insertion policyInsertion policy : Where in the free list do you put a newly : Where in the free list do you put a newly

freed block?freed block?
� LIFO (last-in-first-out) policy

� Insert freed block at the beginning of the free list

�Pro: simple and constant time

�Con: studies suggest fragmentation is worse than address ordered.

� Address-ordered policy

� Insert freed blocks so that free list blocks are always in address order

» i.e. addr(pred) < addr(curr) < addr(succ)

� Con: requires search

� Pro: studies suggest fragmentation is better than LIFO

F6 – 35 – Systemprogrammering 2007

Explicit List Summary

Comparison to implicit list:Comparison to implicit list:
� Allocate is linear time in number of free blocks instead of total

blocks -- much faster allocates when most of the memory is full
� Slightly more complicated allocate and free since needs to splice

blocks in and out of the list
� Some extra space for the links (2 extra words needed for each

block). This means that the smallest allocated block gets bigger

which increases internal fragmentation.

Main use of linked lists is in conjunction with segregated Main use of linked lists is in conjunction with segregated

free listsfree lists
� Keep multiple linked lists of different size classes, or possibly for

different types of objects

F6 – 36 – Systemprogrammering 2007

Keeping Track of Free Blocks

Method 1Method 1: : Implicit listImplicit list using lengths -- links all blocks using lengths -- links all blocks

Method 2Method 2: : Explicit listExplicit list among the free blocks using pointers among the free blocks using pointers
within the free blockswithin the free blocks

Method 3Method 3: : Segregated free listSegregated free list
� Different free lists for different size classes

Method 4Method 4: Blocks sorted by size: Blocks sorted by size
� Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

F6 – 37 – Systemprogrammering 2007

Segregated Storage

Each Each size classsize class has its own collection of blocks has its own collection of blocks

1-2

3

4

5-8

9-16

� Often have separate size class for every small size (2,3,4,…)

� For larger sizes typically have a size class for each power of 2

F6 – 38 – Systemprogrammering 2007

Simple Segregated Storage
Separate heap and free list for each size classSeparate heap and free list for each size class

No splittingNo splitting

To allocate a block of size n:To allocate a block of size n:
� If free list for size n is not empty,

� allocate first block on list (note, list can be implicit or explicit)
� If free list is empty,

� get a new page

� create new free list from all blocks in page
� allocate first block on list

� Constant time

To free a block:To free a block:
� Add to free list
� If page is empty, return the page for use by another size (optional)

Tradeoffs:Tradeoffs:
� Fast, but can fragment badly

F6 – 39 – Systemprogrammering 2007

Segregated Fits

Array of free lists, each one for some size classArray of free lists, each one for some size class
To allocate a block of size n:To allocate a block of size n:

� Search appropriate free list for block of size m > n
� If an appropriate block is found:

�Split block and place fragment on appropriate list (optional)
� If no block is found, try next larger class
� Repeat until block is found

To free a block:To free a block:
� Coalesce and place on appropriate list (optional)

TradeoffsTradeoffs
� Faster search than sequential fits (i.e., log time for power of two

size classes)
� Controls fragmentation of simple segregated storage
� Coalescing can increase search times

�Deferred coalescing can help
F6 – 40 – Systemprogrammering 2007

For More Info on Allocators

D. Knuth, “ The Art of Computer Programming, Second D. Knuth, “ The Art of Computer Programming, Second
Edition” , Addison Wesley, 1973Edition” , Addison Wesley, 1973
� The classic reference on dynamic storage allocation

Wilson et al, “ Dynamic Storage Allocation: A Survey and Wilson et al, “ Dynamic Storage Allocation: A Survey and
Critical Review” , Proc. 1995 Int’l Workshop on Memory Critical Review” , Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.Management, Kinross, Scotland, Sept, 1995.
� Comprehensive survey
� Available from CS:APP student site (csapp.cs.cmu.edu)

F6 – 41 – Systemprogrammering 2007

Implicit Memory Management:
Garbage Collection

Garbage collectionGarbage collection: : automatic reclamation of heap-allocated automatic reclamation of heap-allocated

storage -- application never has to freestorage -- application never has to free

Common in functional languages, scripting languages, and Common in functional languages, scripting languages, and

modern object oriented languages:modern object oriented languages:
� Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for C and Variants (conservative garbage collectors) exist for C and

C++C++
� Cannot collect all garbage

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

F6 – 42 – Systemprogrammering 2007

Memory-Related Bugs

Dereferencing bad pointersDereferencing bad pointers

Using unallocated memoryUsing unallocated memory

Reading uninitialized memoryReading uninitialized memory

Overwriting memoryOverwriting memory

Referencing nonexistent variablesReferencing nonexistent variables

Freeing blocks multiple timesFreeing blocks multiple times

Referencing freed blocksReferencing freed blocks

Failing to free blocksFailing to free blocks

F6 – 43 – Systemprogrammering 2007

Dereferencing Bad Pointers

The classic The classic scanfscanf bug bug

Using a pointer that doesn't point at allocated memoryUsing a pointer that doesn't point at allocated memory

int val;

scanf(“%d”, val);

int *p;

scanf(“%d”, p);

F6 – 44 – Systemprogrammering 2007

Reading Uninitialized Memory

Assuming that heap data is initialized to zeroAssuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

F6 – 45 – Systemprogrammering 2007

Overwriting Memory

Allocating the (possibly) wrong sized objectAllocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

F6 – 46 – Systemprogrammering 2007

Overwriting Memory

Off-by-one errorOff-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

F6 – 47 – Systemprogrammering 2007

Overwriting Memory

Not checking the max string sizeNot checking the max string size

Basis for classic buffer overflow attacksBasis for classic buffer overflow attacks
� 1988 Internet worm
� Modern attacks on Web servers
� AOL/Microsoft IM war

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

F6 – 48 – Systemprogrammering 2007

Overwriting Memory

Referencing a pointer instead of the object it points toReferencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 Heapify(binheap, *size, 0);
 return(packet);
}

F6 – 49 – Systemprogrammering 2007

Overwriting Memory

Misunderstanding pointer arithmeticMisunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (*p && *p != val)
 p += sizeof(int);

 return p;
}

F6 – 50 – Systemprogrammering 2007

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function Forgetting that local variables disappear when a function

returnsreturns

int *foo () {
 int val;
 return &val;
}

F6 – 51 – Systemprogrammering 2007

Freeing Blocks Multiple Times

Nasty!Nasty!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);

y = malloc(M*sizeof(int));
<manipulate y>
free(x);

F6 – 52 – Systemprogrammering 2007

Referencing Freed Blocks
Evil! Evil!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);
...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

F6 – 53 – Systemprogrammering 2007

Failing to Free Blocks
(Memory Leaks)

Slow, long-term killer! Slow, long-term killer!

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

F6 – 54 – Systemprogrammering 2007

Failing to Free Blocks
(Memory Leaks)

Freeing only part of a data structureFreeing only part of a data structure

struct list {
 int val;
 struct list *next;
};

foo() {
 struct list *head =
 malloc(sizeof(struct list));
 head->val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

F6 – 55 – Systemprogrammering 2007

Dealing With Memory Bugs

Conventional debugger (Conventional debugger (gdbgdb))
� Good for finding bad pointer dereferences
� Hard to detect the other memory bugs

Debugging Debugging mallocmalloc (CSRI UToronto (CSRI UToronto mallocmalloc))
� Wrapper around conventional malloc
� Detects memory bugs at malloc and free boundaries

�Memory overwrites that corrupt heap structures
�Some instances of freeing blocks multiple times
�Memory leaks

� Cannot detect all memory bugs
�Overwrites into the middle of allocated blocks
�Freeing block twice that has been reallocated in the interim
�Referencing freed blocks

F6 – 56 – Systemprogrammering 2007

Dealing With Memory Bugs (cont.)

Binary translatorBinary translator
� Powerful debugging and analysis technique

� Rewrites text section of executable object file

� Can detect all errors as debugging malloc

� Can also check each individual reference at runtime
�Bad pointers

�Overwriting

�Referencing outside of allocated block

Garbage collection (Boehm-Weiser Conservative GC)Garbage collection (Boehm-Weiser Conservative GC)
� Let the system free blocks instead of the programmer.

