
Systemprogrammering 2006
Föreläsning 8

Network Programming

TopicsTopics
� Client-server programming model
� Networks
� Internetworks
� Global IP Internet

� IP addresses
�Domain names
�Connections

� Socket interface

� Writing clients and servers

F8 – 2 – Systemprogrammering 2007

A Client-Server Transaction

Client

process

Server

process

1. Client sends request

2. Server

handles

request

3. Server sends response
4. Client

handles

response

Resource

Every network application is based on the client-server model:Every network application is based on the client-server model:
� A server process and one or more client processes

� Server manages some resource.

� Server provides service by manipulating resource for clients.

Note: clients and servers are processes running on hosts

(can be the same or different hosts).

F8 – 3 – Systemprogrammering 2007

Hardware Org of a Network Host

main

memory
I/O

bridge
MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network
adapter

network

F8 – 4 – Systemprogrammering 2007

Computer Networks

A network is a hierarchical system of boxes and wires A network is a hierarchical system of boxes and wires

organized by geographical proximityorganized by geographical proximity
� LAN (local area network) spans a building or campus.

�Ethernet is most prominent example.
� WAN (wide-area network) spans country or world.

�Typically high-speed point-to-point phone lines.

An An internetworkinternetwork ((internetinternet)) is an interconnected set of is an interconnected set of

networks.networks.
� The Gobal IP Internet (uppercase “ I”) is the most famous example of

an internet (lowercase “ i”)

Let’s see how we would build an internet from the ground up.Let’s see how we would build an internet from the ground up.

F8 – 5 – Systemprogrammering 2007

Lowest Level: Ethernet Segment

Ethernet segment consists of a collection of Ethernet segment consists of a collection of hostshosts connected by wires connected by wires
(twisted pairs) to a (twisted pairs) to a hubhub. .

Spans room or floor in a building.Spans room or floor in a building.

OperationOperation
� Each Ethernet adapter has a unique 48-bit Mac address.
� Hosts send bits to any other host in chunks called frames.
� Hub slavishly copies each bit from each port to every other port.

� Every host sees every bit.

� Now hubs are usually replaced by switches which send data only to the

right port

host host host

hub
100 Mb/s100 Mb/s

ports

F8 – 6 – Systemprogrammering 2007

Next Level: Bridged Ethernet Segment

Spans building or campus.Spans building or campus.

Bridges cleverly learn which hosts are reachable from which ports and Bridges cleverly learn which hosts are reachable from which ports and
then selectively copy frames from port to port.then selectively copy frames from port to port.

host host host host host

hub hubbridge
100 Mb/s 100 Mb/s

host host

hub 100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

F8 – 7 – Systemprogrammering 2007

Conceptual View of LANs

For simplicity, hubs, bridges, and wires are often shown as a collection For simplicity, hubs, bridges, and wires are often shown as a collection
of hosts attached to a single wire:of hosts attached to a single wire:

host host host...

F8 – 8 – Systemprogrammering 2007

Next Level: internets

Multiple incompatible LANs can be physically connected by specialized Multiple incompatible LANs can be physically connected by specialized
computers called computers called routersrouters..

The connected networks are called an The connected networks are called an internetinternet..

host host host

LAN 1

... host host host

LAN 2

...

router router router
WAN WAN

LAN 1 and LAN 2 might be completely different, totally

incompatible LANs (e.g., Ethernet and ATM)

F8 – 9 – Systemprogrammering 2007

The Notion of an internet Protocol

How is it possible to send bits across incompatible LANs How is it possible to send bits across incompatible LANs

and WANs?and WANs?

Solution: Solution: protocol softwareprotocol software running on each host and router running on each host and router

smoothes out the differences between the different smoothes out the differences between the different

networks.networks.

Implements an Implements an internet protocolinternet protocol (i.e., set of rules) that (i.e., set of rules) that

governs how hosts and routers should cooperate when governs how hosts and routers should cooperate when

they transfer data from network to network.they transfer data from network to network.
• TCP/IP is the protocol for the global IP Internet.

F8 – 10 – Systemprogrammering 2007

What Does an internet Protocol Do?

1. Provides a naming scheme1. Provides a naming scheme
� An internet protocol defines a uniform format for host addresses.

� Each host (and router) is assigned at least one of these internet

addresses that uniquely identifies it.

2. Provides a delivery mechanism2. Provides a delivery mechanism
� An internet protocol defines a standard transfer unit (packet)

� Packet consists of header and payload

�Header: contains info such as packet size, source and destination

addresses.

�Payload: contains data bits sent from source host.

F8 – 11 – Systemprogrammering 2007

Transferring Data Over an internet

protocol

software

client

LAN1

adapter

Host A

data

data PH FH1

data PH

data PH FH2

LAN1 LAN2

data

data PH data PH FH2

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)

internet packet

LAN2 frame

protocol

software

LAN1

adapter

LAN2

adapter

Router

FH1

LAN1 frame

data PH

protocol

software

server

LAN2

adapter

Host B

F8 – 12 – Systemprogrammering 2007

Other Issues

We are glossing over a number of important questions:We are glossing over a number of important questions:
� What if different networks have different maximum frame sizes?

(segmentation)

� How do routers know where to forward frames?

� How are routers informed when the network topology changes?

� What if packets get lost?

These (and other) questions are addressed by the area of These (and other) questions are addressed by the area of

systems known as systems known as computer networking.computer networking.

F8 – 13 – Systemprogrammering 2007

Global IP Internet

Most famous example of an internet.Most famous example of an internet.

Based on the TCP/IP protocol familyBased on the TCP/IP protocol family
� IP (Internet protocol) (v. 4, v. 6):

�Provides basic naming scheme and unreliable delivery capability of

packets (datagrams) from host-to-host.
� UDP (Unreliable Datagram Protocol)

�Uses IP to provide unreliable datagram delivery from process-to-
process.

� TCP (Transmission Control Protocol)
�Uses IP to provide reliable byte streams from process-to-process over

connections.

Accessed via a mix of Unix file I/O and functions from the Accessed via a mix of Unix file I/O and functions from the
sockets interfacesockets interface..

F8 – 14 – Systemprogrammering 2007

Hardware and Software Org of an
Internet Application

TCP/IP

Client

Network

adapter

Global IP Internet

TCP/IP

Server

Network

adapter

Internet client host Internet server host

Sockets interface

(system calls)

Hardware interface

(interrupts)

User code

Kernel code

Hardware

and firmware

F8 – 15 – Systemprogrammering 2007

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit 1. Hosts are mapped to a set of 32-bit IP addresses IP addresses (v. 4)(v. 4)..
� 128.2.203.179
� IP v. 6 has 128-bit addresses, but is, so far, rarely used

2. The set of IP addresses is mapped to a set of identifiers 2. The set of IP addresses is mapped to a set of identifiers

called Internet called Internet domain namesdomain names..
� 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a 3. A process on one Internet host can communicate with a

process on another Internet host over a process on another Internet host over a connectionconnection..

F8 – 16 – Systemprogrammering 2007

1. IP Addresses

32-bit IP addresses are stored in an 32-bit IP addresses are stored in an IP address structIP address struct
� IP addresses are always stored in memory in network byte order

(big-endian byte order)
� True in general for any integer transferred in a packet header from

one machine to another.
�E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {
 unsigned int s_addr; /* network byte order (big-endian) */
};

Handy network byte-order conversion functions:

htonl: convert long int from host to network byte order.

htons: convert short int from host to network byte order.

ntohl: convert long int from network to host byte order.

ntohs: convert short int from network to host byte order.

F8 – 17 – Systemprogrammering 2007

Dotted Decimal Notation

By convention, each byte in a 32-bit IP address is By convention, each byte in a 32-bit IP address is

represented by its decimal value and separated by a represented by its decimal value and separated by a

periodperiod
� IP address 0x8002C2F2 = 128.2.194.242

Functions for converting between binary IP addresses and Functions for converting between binary IP addresses and

dotted decimal strings:dotted decimal strings:
� inet_aton: converts a dotted decimal string to an IP address in

network byte order.

� inet_ntoa: converts an IP address in network by order to its

corresponding dotted decimal string.

� “ n” denotes network representation. “ a” denotes application

representation.
F8 – 18 – Systemprogrammering 2007

2. Internet Domain Names

mil edu gov com

cmu berkeleymit

cs ece

kittyhawk
128.2.194.242

cmcl

unnamed root

pdl

imperial
128.2.189.40

amazon

www
208.216.181.15

First-level domain names

Second-level domain names

Third-level domain names

F8 – 19 – Systemprogrammering 2007

Domain Naming System (DNS)
The Internet maintains a mapping between IP addresses and The Internet maintains a mapping between IP addresses and

domain names in a huge worldwide distributed database domain names in a huge worldwide distributed database

called called DNSDNS..
� Conceptually, programmers can view the DNS database as a collection

of millions of host entry structures:

Functions for retrieving host entries from DNS:Functions for retrieving host entries from DNS:
� gethostbyname: query key is a DNS domain name.
� gethostbyaddr: query key is an IP address.

/* DNS host entry structure */
struct hostent {
 char *h_name; /* official domain name of host */
 char **h_aliases; /* null-terminated array of domain names */
 int h_addrtype; /* host address type (AF_INET) */
 int h_length; /* length of an address, in bytes */
 char **h_addr_list; /* null-terminated array of in_addr structs */
};

F8 – 20 – Systemprogrammering 2007

Properties of DNS Host Entries

Each host entry is an equivalence class of domain names and Each host entry is an equivalence class of domain names and

IP addresses.IP addresses.

Each host has a locally defined domain name Each host has a locally defined domain name localhostlocalhost which which

always maps to the always maps to the loopback addressloopback address 127.0.0.1127.0.0.1
Different kinds of mappings are possible:Different kinds of mappings are possible:

� Simple case: 1-1 mapping between domain name and IP addr:
� kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242

� Multiple domain names mapped to the same IP address:
�eecs.mit.edu and cs.mit.edu both map to 18.62.1.6

� Multiple domain names mapped to multiple IP addresses:
�aol.com and www.aol.com map to multiple IP addrs.

� Some valid domain names don’t map to any IP address:
� for example: cmcl.cs.cmu.edu

F8 – 21 – Systemprogrammering 2007

A Program That Queries DNS
int main(int argc, char **argv) { /* argv[1] is a domain name
 char **pp; * or dotted decimal IP addr */
 struct in_addr addr;
 struct hostent *hostp;

 if (inet_aton(argv[1], &addr) != 0)
 hostp = Gethostbyaddr((const char *)&addr, sizeof(addr),
 AF_INET);
 else
 hostp = Gethostbyname(argv[1]);
 printf("official hostname: %s\n", hostp->h_name);

 for (pp = hostp->h_aliases; *pp != NULL; pp++)
 printf("alias: %s\n", *pp);

 for (pp = hostp->h_addr_list; *pp != NULL; pp++) {
 addr.s_addr = *((unsigned int *)*pp);
 printf("address: %s\n", inet_ntoa(addr));
 }
}

F8 – 22 – Systemprogrammering 2007

3. Internet Connections

Clients and servers communicate by sending streams of Clients and servers communicate by sending streams of
bytes over bytes over connectionsconnections::
� Point-to-point, full-duplex (2-way communication), and reliable.

A A socketsocket is an endpoint of a connection is an endpoint of a connection
� Socket address is an IPaddress:port pair

A A portport is a 16-bit integer that identifies a process: is a 16-bit integer that identifies a process:
� Ephemeral port: Assigned automatically on client when client

makes a connection request
� Well-known port: Associated with some service provided by a

server (e.g., port 80 is associated with Web servers)

A connection is uniquely identified by the socket addresses A connection is uniquely identified by the socket addresses
of its endpoints (of its endpoints (socket pairsocket pair))
� (cliaddr:cliport, servaddr:servport)

F8 – 23 – Systemprogrammering 2007

Internet Connections

Connection socket pair

(128.2.194.242:51213, 208.216.181.15:80)

Server

(port 80)
Client

Client socket address

128.2.194.242:51213

Server socket address

208.216.181.15:80

Client host address

128.2.194.242

Server host address

208.216.181.15

Note: 51213 is an
ephemeral port allocated

by the kernel

Note: 80 is a well-known port
associated with Web servers

F8 – 24 – Systemprogrammering 2007

Clients

Examples of client programsExamples of client programs
� Web browsers, ftp, telnet, ssh

How does a client find the server?How does a client find the server?
� The IP address in the server socket address identifies the host

(more precisely, an adapter on the host)
� The (well-known) port in the server socket address identifies the

service, and thus implicitly identifies the server process that

performs that service.
� Examples of well know ports

�Port 7: Echo server

�Port 23: Telnet server
�Port 25: Mail server
�Port 80: Web server

F8 – 25 – Systemprogrammering 2007

Using Ports to Identify Services

Web server

(port 80)

Client host

Server host 128.2.194.242

Echo server

(port 7)

Service request for

128.2.194.242:80

(i.e., the Web server)

Web server

(port 80)

Echo server

(port 7)

Service request for

128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

F8 – 26 – Systemprogrammering 2007

Servers

Servers are long-running processes (daemons).Servers are long-running processes (daemons).
� Created at boot-time (typically) by the init process (process 1)
� Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well-known port Each server waits for requests to arrive on a well-known port

associated with a particular service.associated with a particular service.
� Port 7: echo server
� Port 23: telnet server
� Port 25: mail server
� Port 80: HTTP server

A machine that runs a server process is also often referred to A machine that runs a server process is also often referred to

as a “ server.”as a “ server.”

F8 – 27 – Systemprogrammering 2007

Server Examples

Web server (port 80)Web server (port 80)
� Resource: files/compute cycles (CGI programs)
� Service: retrieves files and runs CGI programs on behalf of the

client

FTP server (20, 21)FTP server (20, 21)
� Resource: files
� Service: stores and retrieve files

Telnet server (23)Telnet server (23)
� Resource: terminal
� Service: proxies a terminal on the server machine

Mail server (25)Mail server (25)
� Resource: email “ spool” file
� Service: stores mail messages in spool file

See /etc/services for a

comprehensive list of the

services available on a Unix

machine.

F8 – 28 – Systemprogrammering 2007

Sockets Interface

Created in the early 80’s as part of the original Berkeley Created in the early 80’s as part of the original Berkeley

distribution of Unix that contained an early version of the distribution of Unix that contained an early version of the

Internet protocols.Internet protocols.

Provides a user-level interface to the network.Provides a user-level interface to the network.

Underlying basis for all Internet applications.Underlying basis for all Internet applications.

Based on client/server programming model.Based on client/server programming model.

F8 – 29 – Systemprogrammering 2007

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

accept

rio_readlineb

rio_readlineb

rio_writen

close

rio_readlineb

connect

rio_writen

close

Connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

F8 – 30 – Systemprogrammering 2007

Sockets

What is a socket?What is a socket?
� To the kernel, a socket is an endpoint of communication.

� To an application, a socket is a file descriptor that lets the

application read/write from/to the network.

�Remember: All Unix I/O devices, including networks, are modeled as

files.

Clients and servers communicate with each by reading from Clients and servers communicate with each by reading from

and writing to socket descriptors.and writ ing to socket descriptors.

The main distinction between regular file I/O and socket I/O The main distinction between regular file I/O and socket I/O

is how the application “ opens” the socket descriptors.is how the application “ opens” the socket descriptors.

F8 – 31 – Systemprogrammering 2007

Socket Address Structures
Generic socket address:Generic socket address:

� For address arguments to connect, bind, and accept.
� Necessary only because C did not have generic (void *) pointers

when the sockets interface was designed.

Internet-specific socket address:Internet-specific socket address:
� Must cast (sockaddr_in *) to (sockaddr *) for connect, bind,

and accept.

struct sockaddr {
 unsigned short sa_family; /* protocol family */
 char sa_data[14]; /* address data. */
};

struct sockaddr_in {
 unsigned short sin_family; /* address family (always AF_INET) */
 unsigned short sin_port; /* port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
};

F8 – 32 – Systemprogrammering 2007

Echo Client Main Routine
#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{
 int clientfd, port;
 char *host, buf[MAXLINE];
 rio_t rio;

 host = argv[1];
 port = atoi(argv[2]);

 clientfd = Open_clientfd(host, port);
 Rio_readinitb(&rio, clientfd);

 while (Fgets(buf, MAXLINE, stdin) != NULL) {
 Rio_writen(clientfd, buf, strlen(buf));
 Rio_readlineb(&rio, buf, MAXLINE);
 Fputs(buf, stdout);
 }
 Close(clientfd);
 exit(0);
}

F8 – 33 – Systemprogrammering 2007

Echo Client: open_clientfd
int open_clientfd(char *hostname, int port)
{
 int clientfd;
 struct hostent *hp;
 struct sockaddr_in serveraddr;

 if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1; /* check errno for cause of error */

 /* Fill in the server's IP address and port */
 if ((hp = gethostbyname(hostname)) == NULL)
 return -2; /* check h_errno for cause of error */
 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 bcopy((char *)hp->h_addr,
 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);
 serveraddr.sin_port = htons(port);

 /* Establish a connection with the server */
 if (connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)
 return -1;
 return clientfd;
}

This function opens a connection

from the client to the server at
hostname:port

F8 – 34 – Systemprogrammering 2007

Echo Client: open_clientfd
(socket)

int clientfd; /* socket descriptor */

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1; /* check errno for cause of error */

... (more)

socketsocket creates a socket descriptor on the client. creates a socket descriptor on the client.
� AF_INET: indicates that the socket is associated with Internet

protocols.

� SOCK_STREAM: selects a reliable byte stream connection.

F8 – 35 – Systemprogrammering 2007

Echo Client: open_clientfd
(gethostbyname)

The client then builds the server’s Internet address.The client then builds the server’s Internet address.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

...

/* fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)
 return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((char *)hp->h_addr,
 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);
serveraddr.sin_port = htons(port);

F8 – 36 – Systemprogrammering 2007

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the server.Finally the client creates a connection with the server.
� Client process suspends (blocks) until the connection is created.

� After resuming, the client is ready to begin exchanging messages with

the server via Unix I/O calls on descriptor sockfd.
 int clientfd; /* socket descriptor */
 struct sockaddr_in serveraddr; /* server address */
 typedef struct sockaddr SA; /* generic sockaddr */
...
 /* Establish a connection with the server */
 if (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
 return -1;
 return clientfd;
}

F8 – 37 – Systemprogrammering 2007

Echo Server: Main Routine
int main(int argc, char **argv) {
 int listenfd, connfd, port, clientlen;
 struct sockaddr_in clientaddr;
 struct hostent *hp;
 char *haddrp;

 port = atoi(argv[1]); /* the server listens on a port passed
 on the command line */
 listenfd = open_listenfd(port);

 while (1) {
 clientlen = sizeof(clientaddr);
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
 hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
 sizeof(clientaddr.sin_addr.s_addr), AF_INET);
 haddrp = inet_ntoa(clientaddr.sin_addr);
 printf("server connected to %s (%s)\n", hp->h_name, haddrp);
 echo(connfd);
 Close(connfd);
 }
}

F8 – 38 – Systemprogrammering 2007

Echo Server: open_listenfd

int open_listenfd(int port)
{
 int listenfd, optval=1;
 struct sockaddr_in serveraddr;

 /* Create a socket descriptor */
 if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1;

 /* Eliminates "Address already in use" error from bind. */
 if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)&optval , sizeof(int)) < 0)
 return -1;

... (more)

F8 – 39 – Systemprogrammering 2007

Echo Server: open_listenfd (cont)

...

 /* Listenfd will be an endpoint for all requests to port
 on any IP address for this host */
 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
 serveraddr.sin_port = htons((unsigned short)port);
 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
 return -1;

 /* Make it a listening socket ready to accept
 connection requests */
 if (listen(listenfd, LISTENQ) < 0)
 return -1;

 return listenfd;
}

F8 – 40 – Systemprogrammering 2007

socketsocket creates a socket descriptor on the server. creates a socket descriptor on the server.
� AF_INET: indicates that the socket is associated with Internet

protocols.

� SOCK_STREAM: selects a reliable byte stream connection.

Echo Server: open_listenfd
(socket)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1;

F8 – 41 – Systemprogrammering 2007

Echo Server: open_listenfd
(setsockopt)

The socket can be given some attributes.The socket can be given some attributes.

Handy trick that allows us to rerun the server immediately Handy trick that allows us to rerun the server immediately

after we kill it.after we kill it.
� Otherwise we would have to wait about 15 secs.
� Eliminates “ Address already in use” error from bind().

Strongly suggest you do this for all your servers to simplify Strongly suggest you do this for all your servers to simplify

debugging.debugging.

...
/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)&optval , sizeof(int)) < 0)
 return -1;

F8 – 42 – Systemprogrammering 2007

Echo Server: open_listenfd
(initialize socket address)

Next, we initialize the socket with the server’s Internet address Next, we initialize the socket with the server’s Internet address
(IP address and port)(IP address and port)

IP addr and port stored in network (big-endian) byte orderIP addr and port stored in network (big-endian) byte order
� htonl() converts longs from host byte order to network byte order.
� htons() convers shorts from host byte order to network byte order.

 struct sockaddr_in serveraddr; /* server's socket addr */
...
 /* listenfd will be an endpoint for all requests to port
 on any IP address for this host */
 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
 serveraddr.sin_port = htons((unsigned short)port);

F8 – 43 – Systemprogrammering 2007

Echo Server: open_listenfd
(bind)

bind bind associates the socket with the socket address we just associates the socket with the socket address we just

created.created.

int listenfd; /* listening socket */
struct sockaddr_in serveraddr; /* server’s socket addr */

...
 /* listenfd will be an endpoint for all requests to port
 on any IP address for this host */
 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
 return -1;

F8 – 44 – Systemprogrammering 2007

Echo Server: open_listenfd
(listen)

listenlisten indicates that this socket will accept connection indicates that this socket will accept connection

((connectconnect) requests from clients.) requests from clients.

We’re finally ready to enter the main server loop that We’re finally ready to enter the main server loop that

accepts and processes client connection requests.accepts and processes client connection requests.

int listenfd; /* listening socket */

...
 /* Make it a listening socket ready to accept connection requests */
 if (listen(listenfd, LISTENQ) < 0)
 return -1;
 return listenfd;
}

F8 – 45 – Systemprogrammering 2007

Echo Server: Main Loop

The server loops endlessly, waiting for connection requests, The server loops endlessly, waiting for connection requests,

then reading input from the client, and echoing the input then reading input from the client, and echoing the input

back to the client. back to the client.

main() {

 /* create and configure the listening socket */

 while(1) {
 /* Accept(): wait for a connection request */
 /* echo(): read and echo input lines from client til EOF */
 /* Close(): close the connection */
 }
}

F8 – 46 – Systemprogrammering 2007

accept()accept() blocks waiting for a connection request. blocks waiting for a connection request.

acceptaccept returns a returns a connected descriptor connected descriptor ((connfdconnfd) with the) with the

same properties as the same properties as the listening descriptorlistening descriptor ((listenfdlistenfd))

but with a new (ephemeral) port.but with a new (ephemeral) port.
� Returns when the connection between client and server is created

and ready for I/O transfers.
� All I/O with the client will be done via the connected socket.

accept accept also fills in client’s IP address. also fills in client’s IP address.

Echo Server: accept

 int listenfd; /* listening descriptor */
 int connfd; /* connected descriptor */
 struct sockaddr_in clientaddr;
 int clientlen;

 clientlen = sizeof(clientaddr);
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

F8 – 47 – Systemprogrammering 2007

Echo Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept,

waiting for connection request

on listening descriptor

listenfd.clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request

by calling and blocking in connect.

Connection

request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd from

accept. Client returns from connect.

Connection is now established

between clientfd and connfd.
connfd(4)

New ephemeral port

Usually a known port

F8 – 48 – Systemprogrammering 2007

Connected vs. Listening Descriptors

Listening descriptorListening descriptor
� End point for client connection requests.
� Created once and exists for lifetime of the server.

Connected descriptorConnected descriptor
� End point of the connection between client and server.
� A new descriptor is created each time the server accepts a

connection request from a client.
� Exists only as long as it takes to service client.

Why the distinction?Why the distinction?
� Allows for concurrent servers that can communicate over many

client connections simultaneously.
�E.g., Each time we receive a new request, we fork a child to handle the

request (more about this in later lectures).

F8 – 49 – Systemprogrammering 2007

Echo Server: Identifying the Client

The server can determine the domain name and IP address The server can determine the domain name and IP address

of the client.of the client.

 struct hostent *hp; /* pointer to DNS host entry */
 char *haddrp; /* pointer to dotted decimal string */

 hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
 sizeof(clientaddr.sin_addr.s_addr), AF_INET);
 haddrp = inet_ntoa(clientaddr.sin_addr);
 printf("server connected to %s (%s)\n", hp->h_name, haddrp);

F8 – 50 – Systemprogrammering 2007

Echo Server: echo

void echo(int connfd)
{
 size_t n;
 char buf[MAXLINE];
 rio_t rio;

 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 printf("server received %d bytes\n", n);
 Rio_writen(connfd, buf, n);
 }
}

The server uses RIO to read and echo text lines until EOF The server uses RIO to read and echo text lines until EOF

(end-of-file) is encountered.(end-of-file) is encountered.
� EOF notification caused by client calling close(clientfd).

� IMPORTANT: EOF is a condition, not a particular data byte.

F8 – 51 – Systemprogrammering 2007

Testing Servers Using telnet

The The telnet telnet program is invaluable for testing servers that program is invaluable for testing servers that

transmit ASCII strings over Internet connectionstransmit ASCII strings over Internet connections
� Our simple echo server
� Web servers
� Mail servers

Usage: Usage:
� unix> telnet <host> <portnumber>
� Creates a connection with a server running on <host> and

listening on port <portnumber>.

F8 – 52 – Systemprogrammering 2007

Testing the Echo Server With telnet
bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk> telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
123
123
Connection closed by foreign host.
kittyhawk> telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
456789
456789
Connection closed by foreign host.
kittyhawk>

F8 – 53 – Systemprogrammering 2007

Running the Echo Client and Server

bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789
...

kittyhawk> echoclient bass 5000
Please enter msg: 123
Echo from server: 123

kittyhawk> echoclient bass 5000
Please enter msg: 456789
Echo from server: 456789
kittyhawk>

F8 – 54 – Systemprogrammering 2007

For More Information

W. Richard Stevens, “ Unix Network Programming: W. Richard Stevens, “ Unix Network Programming:

Networking APIs: Sockets and XTI” , Volume 1, Second Networking APIs: Sockets and XTI” , Volume 1, Second

Edition, Prentice Hall, 1998.Edition, Prentice Hall, 1998.
� THE network programming bible.

Complete versions of the echo client and server are Complete versions of the echo client and server are

developed in the text.developed in the text.
� Available from /info/sysprog06/examples
� You should compile and run them for yourselves to see how they

work.
� Feel free to borrow any of this code.

