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Lab 2
Raytracing

In this lab you will implement a Raytracer, which draws images of 3D scenes by tracing the light 
rays reaching the simulated camera. The lab is divided into several steps. To get something on the 
screen, you first need to learn how to:

• Represent 3D scenes using triangular surfaces.
• Trace the ray of each pixel in the camera image into the scene.
• Compute ray-triangle intersections, to find out which surface a ray hit.

You will then be able to write a program that draws the image seen to the left in Figure 1. Next, you 
will extend this program by adding:

• Camera motion.
• Simulation of light sources.
• Reflection of light for diffuse surfaces

The result of this can be seen in Figure 1.

Figure 1: The output from this lab.



 
Figure 2: A 3D model represented by triangular surfaces. This bunny is a common test model in 

computer graphics. It can be found at: http://graphics.stanford.edu/data/3Dscanrep/

1 Representing Surfaces

In the first lab you coded a star-field by simulating a pinhole camera and its projection of moving 
3D points. In this lab you will learn how to represent and draw surfaces, instead of points. The 
simplest surface to describe mathematically is a triangular surface. It is simple because it is planar 
and its geometrical properties can be described by only three 3D points: its vertices. For instance, 
from the three vertices we can compute the normal of the surface, i.e. a vector pointing out from the 
surface, being orthogonal to the surface itself. Although one can use other representations for 
surfaces triangles are the most used one for computer graphics due to its simplicity.

See Figure 2 for an example of a 3D model represented by triangular surfaces. When describing a 
surface for computer graphics it is not only the geometrical properties of the surface that are of 
interest. We are also interested in its appearance. The simplest way to describe the appearance of a 
triangle is with a single color. We will therefore use the following data structure to represent a 
triangle:

struct Triangle
{

vec3 v0;
vec3 v1;
vec3 v2;
vec3 normal;
vec3 color;

};

Although the normal can be computed from the vertices, it can be convenient to have it in the data 
structure as well. Then the normals can be computed once and then stored so that we can easily 
access them later whenever we want, without any computations. We can now represent a 3D model 
by a set of triangles. To store all these triangles we will use the global vector:

vector<Triangle> triangles;



To  fill this vector with some triangles representing a 3D model you can use the function:

LoadTestModel( vector<Triangle>& triangles );

The function and the Triangle-struct is defined in the header file TestModel.h which you should 
include in the beginning of the code. This function will fill the vector it takes as an argument with 
the triangles describing the model seen in Figure 1. This is a famous test model in computer 
graphics. You can read more about it at http://www.graphics.cornell.edu/online/box/. It is a cubic 
room with dimensions:

 -1 ≤ x ≤ 1 (1)

 -1 ≤ y ≤ 1 (2)

 -1 ≤ z ≤ 1 (3)

2 Intersection of Ray and Triangle

In our raytracer we want to trace rays, for each pixel of the image, to see where they come from. 
Since we use triangular surfaces to represent our model, this corresponds to finding the first 
intersection between a triangle and a ray. We will now derive equations for this computation.

2.1 Triangles in 3D

Assume v0, v1, v2 are real 3D vectors representing the vertices of the triangle, i.e. they are elements 
of ℝ3. To describe a point in the triangle we construct a coordinate system that is aligned with the 
triangle. We let v0 be the origin of the coordinate system and we let the axis be parallel to two of the 
edges of the triangle:

e1 = v1 - v0 (4)
e2 = v2 - v0 (5)

e1  ℝ3 is then a vector that is parallel to the edge of the triangle between v0 and v1. Similarly, e2  
ℝ3 is parallel to the edge between v0 and v2. Any point r  ℝ3 in the plane of the triangle can then be 
described by two scalar coordinates u  ℝ and v  ℝ, such that its position in 3D is:

r = v0 + ue1 + ve2 (6)

This holds for all points r that are in the plane of the triangle. For points that are not only in the 
same plane, but actually within the triangle we also have that:

0 < u (7)
0 < v (8)
u+v  < 1 (9)

2.2 Rays in 3D

Next, we need a way to describe points that are on a ray. By a ray we mean a segment of a line in 



3D. We define a 3D line by a vector representing its start position s  ℝ3 and a vector representing 
its direction d  ℝ3. All points r lying on the line can then be written: 

r = s + td (10)

where t  ℝ is a scalar coordinate describing the position on the line. It is the signed distance, in 
units of ||d||, to the position r from the start position s. If we do not put any constrain on t we are 
describing a line that extends infinitely in both directions. However, by a ray we only mean the 
points that comes after the start position. For the ray we thus require:

0 ≤ t (11)

2.3 Intersection

To get the intersection between the plane of the triangle and the line of the ray we can insert the 
equation of the plane (6) into the equation of the line (10) and solve for the coordinates t, u, v:

v0 + ue1 + ve2 = s + td (12)

This is an equation of 3D vectors. We thus have one equation for each vector component, i.e. three. 
And since we have three unknowns (t, u, v) it can be solved. To find the solution we re-formulate 
the equation using matrices, as one typically does when solving linear systems of equations:

v0 + ue1 + ve2 = s + td (13)

 td + ue1 + ve2 = s - v0 (14)
 

 (-d  e1   e2)  (t  u  v)T = s – v0 (15)

This might still look a bit weird. To express the linear equation on the standard form we introduce 
the 3x3 matrix:

A =  (-d  e1  e2) (16)

where the vectors -d, e1, e2 are the columns of the matrix. We also give a new name for our right 
hand side vector:

b = s - v0 (17)

And we put our unknowns in the vector:

x = (t  u  v)T (18) 

The linear Equation 15 can then be written more concisely as:

Ax = b (19)

And the solution x can be found by multiplying both sides with the inverse of the matrix A:

Ax = b (20)
A-1Ax = A-1b (21)
Ix = A-1b (22)
x = A-1b (23)



Thus, if we can compute the inverse of the matrix A we can easily and the intersection point x. 
Luckily, GLM both has a class to represent 3x3 matrices (glm::mat3) and a function to compute 
matrix inverses. GLM has also used the possibility of C++ to overload operators. It has defined
the operators +,-,*,/ so that they can be used directly with glm::vec3 and glm::mat3. We can 
therefore do the intersection computations by writing:

using glm::vec3;
using glm::mat3;
vec3 v0 = triangle.v0;
vec3 v1 = triangle.v1;
vec3 v2 = triangle.v2;
vec3 e1 = v1 - v0;
vec3 e2 = v2 - v0;
vec3 b = s - v0;
mat3 A( -d, e1, e2 );
vec3 x = glm::inverse( A ) * b;

This concise syntax is a one of the reasons why we are using C++ for these labs, rather than e.g. 
Java. Another reason is that it is often faster than Java and especially Python. However, C++ is of 
course not good for everything. There are many applications when Java or Python is a better choice.
Now we know the coordinates t,u,v for the intersection point. We can then check the inequalities 7, 
8, 9, 11 to see whether the intersection occurred within the triangle and after the beginning of the 
ray. You Should write a function that does this: 

bool ClosestIntersection(
vec3 start, 
vec3 dir,
const vector<Triangle>& triangles, 
Intersection& closestIntersection 

);

It takes the start position of the ray and its direction and a std::vector of triangles as input. It should 
then check for intersection against all these triangles. If an intersection occurred it should return 
true. Otherwise false. In the case of an intersection it should also return some information about
the closest intersection. Define the following data structure to store this information:

struct Intersection
{

vec3 position;
float distance;
int triangleIndex;

};

The argument closestIntersection sent to the function should be updated with the 3D position of the 
closest intersection. Its distance from the start of the ray and the index of the triangle that was 
intersected. When writing the function ClosestIntersection you might need to know the largest value 
("limits") in the beginning of your code and then writing:

float m = std::numeric_limits<float>::max();

If you are into linear algebra a good optional exercise is to calculate a closed form solution for the 
inverse of the matrix, instead of just using glm::inverse. This can be done with Cramer's rule. We 
need this result if we would like to increase the speed of the intersection computations, which will 
be the bottleneck of our program. Then, when we have the closed form solution we can postpone 
the computation of some of the matrix elements, until they are needed. We start by just computing 
the row needed to compute the distance t. Then, if t is negative there is no need to continue 
analyzing that intersection, as it will not occur. However, doing this is not necessary to pass the lab.



3 Tracing Rays

Now that you have a function that takes a ray and finds the closest intersecting geometry you have 
all you need to start rendering an image with raytracing. The idea is that you trace a ray for each 
pixel of the image. You then need to compute for each pixel what ray it corresponds to. Initially we 
assume that the camera is aligned with the coordinate system of the model with x-axis pointing to 
the right and y-axis pointing down and z-axis pointing forward into the image. The start position for 
all rays corresponding to pixels is the camera position. A vector dℝ3 pointing in the direction 
where the light reaching pixel (x,y) comes from can then be computed as:

d = (x-W/2, y-H/2, f) (24)

where W and H are the width and height respectively of the image and f is the focal length
of the camera, measured in units of pixels. We strongly encourage you to draw a Figure of the 
pinhole camera and make sure that you understand this equation. The focal length can be thought of 
as the distance from the hole in the pinhole camera to the image plane. Add the following global 
variables to store the camera parameters:

float focalLength = ...;
vec3 cameraPos( ..., ..., ... );

Fill in ... with good values for these variables. Make sure that the model can be seen from the 
camera position you choose. What will the horizontal and vertical field of view be for the focal 
length you have chosen?

Figure 3: Tracing a light ray for each pixel to see which surface it first intersects.

You are now ready to write the Draw function. In it you should loop through all pixels and compute 
the corresponding ray direction. Then call the function ClosestIntersection to get the closest 
intersection in that direction. If there was an intersection the color of the pixel should be set to the
color of that triangle. Otherwise it should be black. The result should be similar to Figure 3.



4 Moving the Camera

We now have a simple visualization of our 3D scene. However, it would be nice if we could move 
the camera around. First try to implement translation of the camera by updating the global variable 
cameraPos if the user presses the arrow keys. You can use SDL to check if a key is pressed in this 
way:

void Update()
{

// Compute frame time:

int t2 = SDL_GetTicks();

float dt = float(t2-time);

time = t2;

cout << "Render time: " << dt << " ms." << endl;

Uint8* keystate = SDL_GetKeyState( 0 );

if( keystate[SDLK_UP] )
{

// Move camera forward
}
if( keystate[SDLK_DOWN] )
{

// Move camera backward
}
if( keystate[SDLK_LEFT] )
{

// Move camera to the left
}
if( keystate[SDLK_RIGHT] )
{

// Move camera to the right
}

}

Add code that translates the camera. Since raytracing is slow you will need to set a low width and 
height of the rendered image to get real-time performance, e.g. 100x100 pixels. When you got that 
working you should add a global variable that controls the rotation of the camera. Use a glm::mat3 
to represent the rotation matrix of the camera:

mat3 R;

Then make the left and right arrow keys rotate the camera around the y-axis. It might be convenient 
to add another global variable that stores the angle which the camera should be rotated around the 
y-axis:

float yaw;

When the left and right arrow keys are pressed this angle should be updated and then the rotation 
matrix R should be updated to represent a rotation around the y-axis with this angle. If you do not 
remember how such a matrix looks you can have a look in your linear algebra book or at Wikipedia. 
If the camera is rotated by the matrix R then vectors representing the right (x-axis), down (y-axis) 



and forward (z-axis) directions can be retrieved as:

vec3 right( R[0][0], R[0][1], R[0][2] );
vec3 down( R[1][0], R[1][1], R[1][2] );
vec3 forward( R[2][0], R[2][1], R[2][2] );

To model a rotating camera you need to use these directions both when you move the camera and 
when you cast rays. Implement this. As mentioned previously, you probably need to set a low width 
and height of the image for the algorithm to be fast enough for real-time motion. Since raytracing is 
slow it is typically not used for games and other interactive real-time applications. It is mainly used 
to render single images and special effects for movies. In lab 3 we will implement another 
algorithm, rasterization, which is faster and thus more suitable for interactive applications. After 
you got the camera motion working you can change back to a higher image resolution when doing 
the rest of the lab.

5 Illumination

You should now have a raytracer in which you can move the camera around. However, so far all 
points of a surface has exactly the same color. To add some more realism to the image we will add a 
light source. We will model an omni light. Such a light spreads light equally in all directions from a
single point in space. The light can be defined by two global variables: its position and power for 
each color component:

vec3 lightPos( 0, -0.5, -0.7 );
vec3 lightColor = 14.f * vec3( 1, 1, 1 );

The color vector describes the power P, i.e. energy per time unit E/t of the emitted light for each 
color component. Each component thus has the physical unit W=J/s. The light will spread uniformly 
around the point light source, like an expanding sphere. Therefore, if a surface is further away from 
the light source it will receive less light per surface area. To derive a formula for the received light 
at a distance r from the light source we can think about a sphere with radius r centered at the light 
source. The emitted light will be spread uniformly over the whole surface area of the sphere which 
is:

A = 4πr2 (25)

The power per area

Breaching any point on the sphere is therefore:

B = P/A = P/4πr2 (26)

When working with illumination this physical quantity is often used. Since it describes power per 
area, it has the unit W/m2 =Js-1 m-2. Equation 26 describes the power per area reaching any surface 
point directly facing the light source. However, most of the time we will have surfaces that do not 
directly face the light source. Let n̂ be a unit vector describing the normal pointing out from the 
surface and let r̂ be a unit vector describing the direction from the surface point to the light source. 
Then if B is the power of light reaching a virtual surface area directly facing the light source at the 
surface point, then the power per real surface D will just be a fraction of this: 

D = B max(r̂ . n̂, 0) = (P max (r̂ . n̂, 0))/4πr2 (27)



We get the fraction between D and B by the projection of r̂ on n̂, i.e. a scalar product of two unit 
vectors. Since we do not allow negative light we take the max of the projected value and zero. If the 
angle between the surface normal and direction to the light source is larger than 90 degrees it does 
not receive any direct illumination. One way to think about this projection factor is to consider light 
as a stream of particles. If the particles hit the surface from an angle, instead of straight ahead, they 
will spread out more over the surface and less particles will hit a fixed area over a fixed time.

Figure 4: The incoming light.

If it is raining and you place a bucket outside it will fill more quickly if it is raining straight from 
above than if the wind is blowing and the rain comes from the side. Now we know how much light 
that reaches any surface point directly from the light source, i.e. without reflection via another 
surface. You should then implement the function:

vec3 DirectLight( const Intersection& i );

It takes an intersection, which gives us the position where we want to know the direct illumination, 
as well as the index to the triangle that should get illuminated, therefore we also know the normal of 
the surface. The function should then return the resulting direct illumination described by Equation
27.

Modify the Draw function such that it uses the function DirectLight to compute the color for every 
pixel, after you have computed the intersection it corresponds to. You should then get the result of 
Figure 4. Then you should also make it possible to move the light source, using the keys W and
S to translate it forward and backward and A and D to translate it left and right and Q and E to 
translate it up and down. Do this in the Update function by writing something like:

if( keystate[SDLK_w] )
lightPos += forward;



 

Figure 5: The left object is ideally diffuse. The right object is ideally specular. The middle object is 
somewhere in between.

However, this result does not correspond to how we would perceive the surface in the real world. It 
just tells how much light that reaches a surface point. What we actually see is the fraction of this 
that gets reflected  in the direction of the ray. We thus need a model for this. 

We will model all surfaces as ideally diffuse (see Figure 5). Such surfaces are simple to simulate 
because they reflect light equally in all directions. The viewing angle does not influence the 
perceived color of such a surface point. It will look the same from all directions, having no specular 
high lights. In that sense, it is the opposite of a mirror, which will look completely different 
depending on the viewing angle. A mirror has an ideally specular surface (see Figure 5). 

Let ρ= (ρr, ρg, ρb) describe the fraction of the incoming light that gets reflected by the diffuse 
surface for each color component. Then the light that gets reflected is:

R = ρ * D = (ρ * P max(r̂ . n̂, 0)) / 4πr2 (28)

where the operator . denotes element-wise multiplication between two vectors. If we use glm::vec3 
for 3D vectors we can compute this element-wise multiplication by just writing:

vec3 A(1,2,3);
vec3 B(4,5,6);
vec3 C = A*B; // C will be (4,10,18)

since GLM has overloaded the operator * for two glm::vec3 to represent element-wise 
multiplication. Extend the Draw-function such that only the reflected light gets drawn. The color 
stored in each triangle is its ρ. This should give the result seen in Figure 6.  



Figure 6: Direct illumination, without shadows.

5.1 Direct Shadows

So far a surface gets no direct illumination if it does not face the light source. However, we would 
also like to simulate shadows if another surface intersects the ray from the light source to the 
surface. To simulate this we can use the ClosestIntersection function that we use to cast rays. When 
illuminating a surface point we cast another ray from it to the light source. Then we check the 
distance to the closest intersecting surface. If that is closer than the light source the surface is in 
shadow and does not receive any direct illumination from the light source. Add this to your 
DirectLight function. If it works you should see shadows like in Figure 7.

5.2 Indirect Illumination

Just implementing the direct illumination will make some surface points appear pitch black. It only 
simulates one bounce of light from the light source via a surface point to the camera. In the real 
world light keeps reflecting multiple times and therefore reaches all surfaces at some point. At each 
reflection some of the light is absorbed by the surface, as specified by its ρ. This indirect 
illumination results in the smooth shadows that we see in the real world.



Figure 7: Direct illumination with shadows.

It is very computationally expensive to simulate the multiple bounces of light required for accurate 
computation of indirect illumination. For this lab it is not necessary. Instead, we will use a very 
simple approximation to model the indirect illumination. We will just assume that the indirect 
illumination is the same for every surface of the scene. Let N be the power per surface area of this 
constant indirect illumination. Then the total incident illumination of a surface point is:

T = D + N (29)

And the reflected light is:

R = ρ * T = ρ * (D+N) (30)

First create a new global variable to store the constant approximation of the indirect illumination:

vec3 indirectLight = 0.5f*vec3( 1, 1, 1 );

Then implement this illumination model, Equation 30, in your Draw function. You should not alter 
the function DirectLight as it should only return the direct illumination which it already does. The 
result is an image were no surface is completely black, like in Figure 8.



Figure 8: Direct illumination and constant approximation of indirect illumination

You have now written a raytracer, that handles direct illumination and shadows and approximates 
indirect illumination with a constant term. In the optional individual project, you have the 
opportunity to improve your raytracer. If you want you could then add things like:

• Soft edges (anti-aliasing) by sending multiple slightly perturbed rays for each pixel.

• Depth of field, by modeling the camera lens. Includes soft edges.

• Indirect illumination by multiple bounces of light (difficult).

• Textures. Can be used for color/reflectance and/or normal maps, and/or parallax mapping.

• Loading of general models.

• Storing the geometry in a hierarchical spatial structure for faster inter-section queries. This 
speeds up the rendering which is good for more complex/interesting scenes.

• Specular materials. For example you could simulate water with normal maps.

• Using fractals to automatically generate geometry and textures for mountains, clouds and 
water.


