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Lab 3 
Rasterization 

 

Raytracing is the simplest way of computing a 2D image of a 3D scene. It can be used to simulate all kinds of 
phenomena, much more than we implemented in the second lab. Its only disadvantage is the speed. It is therefore 
typically not used for real-time visualization. For those scenarios another algorithm called rasterization can be 
used. Although rasterization is typically faster than raytracing it is not as easy to implement and it cannot be used 
to simulate all illumination phenomena. It is for instance very difficult to simulate multiple bounces of light with 
it. In this lab you will implement a rasterizer. The lab consists of three parts. In the first part you will explore: 
 

• Perspective projection of 3D points by a pinhole camera. 
 

• Drawing 3D objects modeled by triangular surfaces by first 
projecting the vertices of the triangles to the 2D image plane. 

 
• Drawing the edges of each triangle as lines in 2D, using 

linear interpolation. 
 
The result of this can be seen in the top image in Figure 1. You will 
then add: 
 

• Drawing of filled triangles. 
 

• A depth buffer to check visibility for each pixel. 
 
The result of this is very similar to the first part of lab 2, as can be 
seen in the middle image of Figure 1, but computed much faster. In 
the last part you will extend the program by also implementing: 
 

• Light sources. 
 

• Interpolation of arbitrary quantities across the triangle, 
although you will focus on light. 

 
• Per vertex and per pixel illumination, implemented by vertex 

and pixel shaders. 
 
The final result can be seen in Figure 1. 

 
 

 

 

 

 

Figure 1: The output of this lab. 

 



1 Transformations 
 
 
1.1 Perspective Projection of Points from 3D to 2D 
 
In the first lab you made a starfield by simulating a pinhole camera and its projection of 3D points to an image. 
In the second lab you did a raytracer by also simulating a pinhole camera, but you did not project points then. 
Instead you sent out rays for each pixel of the camera image. These are the two main approaches that can be used 
to make a 2D image of a 3D world. In this lab we will go back to the first approach and use projection instead of 
raytracing. Assume we have a pinhole camera positioned at the origin looking along the z-axis of a 3D 
coordinate system. Let the x-axis point to the right and let the y-axis point downwards. Let f be the focal length 
of the camera, i.e. the distance from the camera position to the image plane, measured in pixel units. Let the x- 
and y-axis of the 2D camera image be the same as for the 3D world, i.e. the origin will be in the "middle" of the 
image. Then the projection of an arbitrary 3D point (X, Y, Z) to a 2D point (x, y) in the camera image can be 
written as: 
 

x = f X/Z    (1) 
 

y = f Y/Z    (2) 
 
This relation can be derived by looking at two triangles that have the same angles. However, when working with 
computers it is common to have the origin of the image in the top left corner. If the image has width W and 
height H the projection can then be written: 
 

x = f X/Z+W2    (3) 
 

y = f Y/Z+H2   (4) 
 
 
1.2 Translation 
 
Assume the camera is not fixed at the origin but can move around freely. Let C be the position of the camera. 
Then to project a 3D point using equation 3 and 4 we first need to transform the point P from the world 
coordinate system to the system where the camera is at the origin. We can do this by subtracting the position of 
the camera: 
 

P' = P - C    (5) 
 
P' is then the position of the point in a coordinate system centered at the camera. 
 
 
1.3 Rotation 

 
Now we assume that the camera position is fixed at the origin again but that it can rotate around it. We then have 
a fixed world coordinate system and another coordinate system that rotates with the camera. The transformation 
of a position vector P from the world coordinate system to the system of the camera can then be expressed using 
a 3x3 matrix R and vector-matrix multiplication: 
 

P'   =   P     R    (6) 
                                  (1x3) = (1x3) (3x3)   
 
where P and P' are row vectors. We say that the matrix R that can be used to perform this transformation is the 
rotation matrix of the camera. Here we have used row vectors to represent 3D positions. We then multiply them 
on the left side of the matrix. It is of course also possible to use column vectors. Then the transformation from 
world system to camera system would have been: 
 

P'  =   R     P    (7) 
                          (3x1) = (3x3) (1x3)   

 
i.e. we would have multiplied the column vector on the right side of the matrix instead. Note that the rotation 
matrices are slightly different in those two cases, although they describe the same rotation. Each is the transpose 



of the other. There is no theoretical difference between the two approaches, but in practice it can be confusing, 
especially if they are mixed. In computer graphics it is most common to use row vectors that are multiplied on 
the left side of the matrix, as in equation 6, but it many other fields the other approach is more common. It is 
therefore good if you are familiar with both approaches and understand that there is nothing strange about them. 
 
 
1.4 Translation & Rotation 
 
Finally we assume that the camera can both rotate and translate. Then we can perform the transformation of a 
point from world coordinate system to camera coordinate system in two steps: 
 
1. Transform it from world space to a coordinate system that is centered at the camera using equation 5. 
 
2. Transform it from the coordinate system that is centered at the camera to a system that is also rotated as the 
camera using equation 6. 
 
The total transformation then becomes: 
 

P' = (P - C) R    (8)  



2 Drawing Points 

First just try to project and plot the vertices of the scene, similar to how you did for the starfield in the first lab. 
The Draw function in the given skeleton program looks like: 
 
void Draw() 
{ 

SDL_FillRect( screen, 0, 0 ); 
if( SDL_MUSTLOCK(screen) ) 
SDL_LockSurface(screen); 
for( int i=0; i<triangles.size(); ++i ) 
{ 

vector<vec3> vertices(3); 
vertices[0] = triangles[i].v0; 
vertices[1] = triangles[i].v1; 
vertices[2] = triangles[i].v2; 
for(int v=0; v<3; ++v) 
{ 

ivec2 projPos; 
VertexShader( vertices[v], projPos ); 
vec3 color(1,1,1); 
PutPixelSDL( screen, projPos.x, projPos.y, color ); 

} 
} 
if ( SDL_MUSTLOCK(screen) ) 
SDL_UnlockSurface(screen); 
SDL_UpdateRect( screen, 0, 0, 0, 0 ); 

} 

 
The function loops through all triangles and all vertices of the triangles and calls the function VertexShader on 
each. You have to implement this function: 
 
void VertexShader( const vec3& v, ivec2& p ); 
 
It should take the 3D position of a vertex v and compute its 2D image position and store it in the given 2D 
integer vector p. glm::ivec2 is a data type for 2D integer vectors, i.e. a pixel position will be represented by two 
integers. Thus it should handle the translation and rotation of the camera as well as the perspective projection. If 
you want you can wait with implementing the rotation and also the motion of the camera in the Update-function. 
These things will be easier to debug later when you will see something more than just some sparse points on the 
screen. You can start by just having a fixed position of the camera represented by the global variable: 
 
vec3 cameraPos( 0, 0, -3.001 ); 
 
As you might remember from the second lab our 3D scene consists of a cubic room placed at the origin and 
having a side length of 2. If we set the focal length, width and height of the camera to the same number and place 
the camera at (0, 0, -3.001) it will see the whole room. Why is that? Make sure that you understand this by 
drawing a Figure. If you got this working you should see something similar to Figure 2, i.e. points at the 
corners/vertices of the room and the two boxes. 
 

 

Figure 2: Drawing points projected by a pinhole camera. 



3 Drawing Edges 
 
To make the visualization slightly more interesting we will try to also draw the edges of the triangles, instead of 
just the vertices. We can do this by drawing lines in 2D between the projected vertices of the triangle. To draw 
lines in 2D you can use a function that does linear interpolation similar to what you wrote for the first lab. 
Instead of interpolating pixel colors represented by glm::vec3 we will interpolate pixel positions represented by 
glm::ivec2. In this lab you will later extend the function to interpolate lots of different values and it is therefore 
convenient if the interpolation is implemented in a simple but efficient way. As you might remember from the 
first lab this is a good way to do it: 
 
void Interpolate( ivec2 a, ivec2 b, vector<ivec2>& result ) 
{ 

int N = result.size(); 
vec2 step = vec2(b-a) / float(max(N-1,1)); 
vec2 current( a ); 
for( int i=0; i<N; ++i ) 
{ 

result[i] = current; 
current += step; 

} 
} 
 
Just as in the first lab the Interpolation function takes the start value a and the end value b and fills the std::vector 
result with values linearly interpolated in between. The size of the result vector should have been set before 
calling this function, as it determines the number of discretization steps of the interpolation. For example to 
create a std::vector containing the values (4, 2), (3, 4), (2, 6), (1, 8) we can write: 
 
vector<ivec2> result(4); 
ivec2 a(4,2); 
ivec2 b(1,8); 
Interpolate( a, b, result ); 

 
Make sure that you understand how the interpolation code works as you will use it a lot and also extend it to 
work for other quantities than 2D positions. It might be good to know that although this is a simple way to 
perform interpolation of integers it is not as fast as Bresenham's line algorithm. 
However, that is less intuitive and nothing you need to worry about for this lab. Doing linear interpolation in this 
simple way is good enough for us. To draw a line in 2D we first need to know how many pixels the line should 
consist of. We do not want any holes in the line. Depending on whether the line is mostly horizontal or vertical 
we will use one pixel per column or one pixel per row. If a and b represent the start and end of the line segment 
we can then compute the number of pixels to draw as: 
 
ivec2 delta = glm::abs( a - b ); 
int pixels = glm::max( delta.x, delta.y ) + 1; 

 
You can then get the pixel positions of the line by calling the Interpolation function: 
 
vector<ivec2> line( pixels ); 
Interpolate( a, b, line ); 
 
When we have these we can loop through all of them and call PutPixelSDL for these pixel positions to draw the 
line. Write a function that does this:  
 
void DrawLineSDL( SDL_Surface* surface, ivec2 a, ivec2 b, vec3 color ); 
 
Before applying it to draw the edges of the projected triangles, try to draw lines between some arbitrary image 
points. When you got that working add another function to draw the edges of a triangle: 
 
void DrawPolygonEdges( const vector<vec3>& vertices ) 
{ 

int V = vertices.size(); 
// Transform each vertex from 3D world position to 2D image position: 
vector<ivec2> projectedVertices( V ); 
for( int i=0; i<V; ++i ) 
{ 

VertexShader( vertices[i], projectedVertices[i] ); 
} 



// Loop over all vertices and draw the edge from it to the next vertex: 
for( int i=0; i<V; ++i ) 
{ 

int j = (i+1)%V; // The next vertex 
vec3 color( 1, 1, 1 ); 
DrawLineSDL( screen, projectedVertices[i], projectedVertices[j], 

color ); 
} 

} 
 
It takes the vertices of the triangle, or in fact any polygon, and project them to the image and then draw a line for 
each edge, using DrawLineSDL. The % operator gives the remainder after division of two integers. We use it to 
make the next index after the last index wrap around to the first index. The operator works like this: 
 
0%3 = 0 
1%3 = 1 
2%3 = 2 
3%3 = 0 
4%3 = 1 
5%3 = 2 
6%3 = 0 (9) 
 
You can then use DrawPolygonEdges in the Draw-function like this: 
 
void Draw() 
{ 

SDL_FillRect( screen, 0, 0 ); 
if( SDL_MUSTLOCK(screen) ) 
SDL_LockSurface(screen); 
for( int i=0; i<triangles.size(); ++i ) 
{ 

vector<vec3> vertices(3); 
vertices[0] = triangles[i].v0; 
vertices[1] = triangles[i].v1; 
vertices[2] = triangles[i].v2; 
DrawPolygonEdges( vertices ); 

} 
if ( SDL_MUSTLOCK(screen) ) 
SDL_UnlockSurface(screen); 
SDL_UpdateRect( screen, 0, 0, 0, 0 ); 

} 

 
This should give you an image of a wire frame scene like in Figure 3. Now when you have a better visualization 
of the scene you should also implement motion of the camera if you have not done that yet. Have global 
variables for the position of the camera and its rotation. 
 
vec3 cameraPos( 0, 0, -3.001 ); 
mat3 R; 
float yaw = 0; // Yaw angle controlling camera rotation around y-axis 

 
 
 
 



 
 

Figure 3: Drawing edges 
 
 
Update these in the Update-function when the user presses the arrow keys just as you did in lab 2 and make sure 
that the VertexShader function handles both the translation and rotation of the camera before it projects a point 
from 3D to 2D. It should be possible to rotate the camera around the y-axis. This type of rotation is called yaw. If 
you want you can also add the possibility to rotate the camera up and down (pitch rotation), but that is not 
mandatory. Another thing that you can add if you want is control of the camera rotation by the mouse instead of 
the keyboard. This is also not mandatory. You can get access the relative motion of the mouse by calling SDL 
GetRelativeMouseState: 
 
int dx; 
int dy; 
SDL_GetRelativeMouseState( &dx, &dy ); 
 
This function can also be used to see which mouse buttons that are pressed. You can read more about it in the 
SDL documentation. 
When you move around with the camera you might notice that there are problems if the vertices are behind the 
camera. This is actually a bit tricky to fix and nothing you need to do for this lab. The solution to the problem is 
to perform clipping of the triangles before they are drawn. Clipping is a topic that could be studied in the 
optional project. 
 
 
 
 
  



4 Filled Triangles 
 
By just drawing the edges of the triangles we get some feeling for the 3D structure of the scene which might be 
good for some engineering visualizations. Nevertheless, it would be nice if we could also draw solid surfaces, 
i.e. fill the triangles with color. This turns out to be a bit more involved. 
The main idea is to draw the triangle row by row. We have an array that stores the start position and another 
array that stores the end position of the triangle for each row: 
 
vector<ivec2> leftPixels( ROWS ); 
vector<ivec2> rightPixels( ROWS ); 
 
Assume we have somehow filled these arrays with values, then it is simple to loop through them and draw each 
row from the start to the end. The tricky part is to compute the arrays in the first place. 
 
As an example consider a triangle which has the projected vertices: (10,20), (30,10), (20,40), it should be drawn 
as 40-10+1=31 rows. The arrays for the left and right positions should then have 31 elements each. 
Corresponding elements should have the same y-coordinate but different x-coordinates: the left and right of that 
row. 
 
One way to fill these arrays with values representing the polygon is to first initialize the start arrays with really 
big values and the end array with really small values: 
 
for( int i=0; i<ROWS; ++i ) 
{ 

leftPixels[i].x = +numeric_limits<int>::max(); 
rightPixels[i].x = -numeric_limits<int>::max(); 

} 

 
We then loop through the edges of the polygon and compute the pixels corresponding to its line. Then for each 
y-coordinate of this line we check the corresponding elements in the left and right arrays. If the current x-value 
in the left array at that place is larger than the x-value of the line we replace it. If the current x-value in the right 
array at that place is smaller than the x-value of the line we replace it. After we have looped through all edges we 
then have the smallest x-value for each row in the left array and the largest value for each row in the right array. 
Write a function that does this: 
 
void ComputePolygonRows(const vector<ivec2>& vertexPixels, vector<ivec2>& leftPixels, 
vector<ivec2>& rightPixels ) 
{ 

// 1. Find max and min y-value of the polygon 
// and compute the number of rows it occupies. 

 
// 2. Resize leftPixels and rightPixels 
// so that they have an element for each row. 

 
// 3. Initialize the x-coordinates in leftPixels 
// to some really large value and the x-coordinates 
// in rightPixels to some really small value. 
 
// 4. Loop through all edges of the polygon and use 
// linear interpolation to find the x-coordinate for 
// each row it occupies. Update the corresponding 
// values in rightPixels and leftPixels. 

} 
 
It should take a vector with the projected position of the three vertices and compute the start and end image 
position of each row of the triangle. In fact, we can use this function not only to draw triangles but any convex 
polygon. You can test that your function produces sensible output by writing something like: 
 
vector<ivec2> vertexPixels(3); 
vertexPixels[0] = ivec2(10, 5); 
vertexPixels[1] = ivec2( 5,10); 
vertexPixels[2] = ivec2(15,15); 
vector<ivec2> leftPixels; 
vector<ivec2> rightPixels; 
ComputePolygonRows( vertexPixels, leftPixels, rightPixels ); 
 
for( int row=0; row<leftPixels.size(); ++row ) 



{ 
cout << "Start: (" 
<< leftPixels[row].x << "," 
<< leftPixels[row].y << "). " 
<< "End: (" 
<< rightPixels[row].x << "," 
<< rightPixels[row].y << "). " << endl; 

} 
 
This should give the output: 
 
Start: (10,5). End: (10,5). 
Start: (9,6). End: (10,6). 
Start: (8,7). End: (11,7). 
Start: (7,8). End: (11,8). 
Start: (6,9). End: (12,9). 
Start: (5,10). End: (12,10). 
Start: (7,11). End: (13,11). 
Start: (9,12). End: (13,12). 
Start: (11,13). End: (14,13). 
Start: (13,14). End: (14,14). 
Start: (15,15). End: (15,15). 
 
When you got this working you can write a function that draws the computed rows: 
 
void DrawRows( const vector<ivec2>& leftPixels, 
const vector<ivec2>& rightPixels ); 
 
This function should call PutPixelSDL for each pixel between the start and end for each row. Finally write a 
function that projects the vertices and calls the other two functions: 
 
void DrawPolygon( const vector<vec3>& vertices ) 
{ 

int V = vertices.size(); 
vector<ivec2> vertexPixels( V ); 
for( int i=0; i<V; ++i ) 

VertexShader( vertices[i], vertexPixels[i] ); 
 

vector<ivec2> leftPixels; 
vector<ivec2> rightPixels; 
ComputePolygonRows( vertexPixels, leftPixels, rightPixels ); 
DrawPolygonRows( leftPixels, rightPixels ); 

} 
 
Then call DrawPolygon in the Draw-function instead of DrawPolygonEdges. To signal what color to draw you 
can create a new global variable: 
 
vec3 currentColor; 
 
which you use in DrawPolygonRows when you call PutPixelSDL. We set this color to the color of the current 
triangle when we loop over all triangles and call DrawPolygon in the Draw-function: 
 
void Draw() 
{ 

SDL_FillRect( screen, 0, 0 ); 
if( SDL_MUSTLOCK(screen) ) 
SDL_LockSurface(screen); 
for( int i=0; i<triangles.size(); ++i ) 
{ 

currentColor = triangles[i].color; 
vector<vec3> vertices(3); 
vertices[0] = triangles[i].v0; 
vertices[1] = triangles[i].v1; 
vertices[2] = triangles[i].v2; 
DrawPolygon( vertices ); 

} 
if ( SDL_MUSTLOCK(screen) ) 
SDL_UnlockSurface(screen); 
SDL_UpdateRect( screen, 0, 0, 0, 0 ); 

} 

 



You should then get the result seen in Figure 4. When you manage to get that you are done with most of the 
coding for this lab. The remaining stuff does not require as much coding but greatly improves the image. Notice 
how the blue box is drawn on top of the red since we have not added any mechanism to deal with occlusion yet. 
Compare the speed of the program with the raytracer. How much faster is it for this scene? 
 
 

 
 

Figure 4: Filled triangles. Notice how the blue box is drawn on top of the red. 
 
 
  



5 Depth Buffer 
 
You have now implemented the core of a rasterizer. However, a problem with the current implementation is that 
the triangles might be drawn on top of each other, in arbitrary order. If multiple triangles occupy the same pixel 
we would like the one closest to the camera to be visible. In the raytracer we managed this by treating all pixels 
independently. For each pixel we followed a ray and looked at the closest intersection for that ray.  
 
In a rasterizer we try to speed things up by not treating every pixel independently. We just treat every triangle 
independently. The standard way to handle this occlusion problem in a rasterizer is to use a so called depth 
buffer. That is an image storing a depth value for each pixel instead of a color value. For each pixel we thus store 
the depth of the closest surface point that has been drawn at that position so far. When we draw a new pixel we 
can then check if its depth is smaller than the one currently stored in the depth buffer. Only then do we draw it 
and also replace the value in the depth buffer. 
  
To do this we need to keep track of the depth of each pixel in the image. We can do this by interpolating the 
depth over the triangle when we draw it. First we compute the depth of the vertices, in the coordinate system of 
the camera. Then we interpolate the depth over each edge of the triangle. Finally, we interpolate the depth over 
each row when we draw. This is similar to the bilinear interpolation we used in the first lab. First we interpolate 
the left and right edge from top to bottom. Secondly, we interpolate each row from left to right. 
 
However, the perspective projection makes the interpolation a bit more involved. Assume z1 is the depth of one 
of the vertices and z2 is the depth of another vertex. Then in the 3D world the depth along the edge will vary 
linearly between z1 and z2, since the surface is planar. However, in the image the depth along the edge will not 
vary linearly! Instead it turns out that 1=z will vary linearly, due to the perspective projection of the camera. We 
can thus compute this quantity for each vertex and then interpolate it linearly across the projected 2D triangle. 
 
After interpolation we could take the inverse to get back to the depth z. However, we do not really need the depth 
z. The inverse 1=z which we already have is good enough. We can then store 1=z in the depth buffer for each 
pixel that is drawn. A new pixel should then be drawn if its 1=z is larger than the one already stored in the depth 
buffer. Then its depth z will be smaller and it is closer to the camera. To implement a depth buffer we create a 
global 2D array with the same size as the camera image: 
 
float depthBuffer[SCREEN_HEIGHT][SCREEN_WIDTH]; 
 
In it we will store the inverse depth 1=z for each pixel. Since we now also need to interpolate the depth over the 
triangle, not just 2D position, we create a new struct to hold the information needed for each pixel: 
 
struct Pixel 
{ 

int x; 
int y; 
float zinv; 

}; 
 
Previously we just interpolated the position between the vertices when we a triangle. Now we also want to 
interpolate the inverse depth. Thus, you need to implement an Interpolation function that interpolates our Pixel 
struct linearly instead of glm::ivec2: 
 
void Interpolate( Pixel a, Pixel b, vector<Pixel>& result ); 
 
After you have done this you also need to change ComputePoloygonRows, DrawPolygonRows, VertexShader 
and DrawPolygon to handle Pixel instead of glm::ivec2: 
 
void ComputePolygonRows( 

const vector<Pixel>& vertexPixels, 
vector<Pixel>& leftPixels, 
vector<Pixel>& rightPixels  

); 
 
void DrawPolygonRows( 

const vector<Pixel>& leftPixels, 
const vector<Pixel>& rightPixels  

); 
 



void VertexShader( const vec3& v, Pixel& p ) 
 
Thus, in VertexShader you should now compute the inverse depth zinv for the vertex in the coordinate system of 
the camera, before you compute its projected image position (x, y). 
If you do all this you will have access to zinv for every pixel that you draw in DrawPolygonRows. Before 
drawing a new pixel you can then check if it is in front of the one that is currently drawn there by comparing 
with the value of depthBuffer at that pixel. If it is in front you can draw it and update the value in the depth 
buffer. Remember that you also need to clear the depth buffer in the beginning of the Draw-function before you 
start drawing. You do this by setting all pixels to represent infinite depths, i.e. zero inverse depths: 
 
for( int y=0; y<SCREEN_HEIGHT; ++y ) 

for( int x=0; x<SCREEN_WIDTH; ++x ) 
depthBuffer[y][x] = 0; 

 
You should then get surfaces that correctly occlude each other like in Figure 5. 
 
 

 
 

Figure 5: Filled triangles. Notice how the blue box is no longer drawn on top of the red. 
 
 
 
  



6 Illumination 
 
Your rasterizer now renders the same image as the first version of the ray-tracer, but hopefully much faster. We 
will now continue and also add illumination. When computing the illumination in a rasterizer we have two 
choices. We could do the computations for every vertex and then just interpolate the result or we could do the 
computations for every pixel. The first approach will be faster but less accurate. Either way it is convenient to 
have a function that handles whatever computations we want to do per vertex: 
 
void VertexShader( const vec3& v, Pixel& p ); 
 
which we already have, and another function which handles whatever computations we want to do per pixel: 
 
void PixelShader( const Pixel& p ); 
 
This function should be called for every interpolated pixel in DrawPolygonRows and handle the drawing. In the 
current version of our razterizer it might look like: 
 
void PixelShader( const Pixel& p ) 
{ 

int x = p.x; 
int y = p.y; 
if( p.zinv > depthBuffer[y][x] ) 
{ 

depthBuffer[y][x] = f.zinv; 
PutPixelSDL( screen, x, y, currentColor ); 

} 
} 
 
Currently VertexShader takes a glm::vec3 and computes a Pixel. You have probably written something like: 
 
void VertexShader( const vec3& v, Pixel& p ) 
{ 

vec3 pos = (v - cameraPos)*R; 
p.zinv = 1/pos.z; 
p.x = int(focalLength * pos.x * p.zinv) + SCREEN_WIDTH/2; 
p.y = int(focalLength * pos.y * p.zinv) + SCREEN_HEIGHT/2; 

} 
 
To make our rasterizer a bit more general and abstract we can create a new type which describes a general 
vertex: 
 
struct Vertex 
{ 

vec3 position; 
}; 
 
For now we just store the position of the vertex since that is all we use at the moment. However, in general we 
could also assign many other quantities to the vertex. We will soon do this to handle illumination but first make 
your program handle this simple Vertex-type by updating: Draw, DrawPolygon and VertexShader. 
 
The flow of your general rasterizer can now be described as: 
 
1. VertexShader is called for each Vertex and computes a Pixel. 

 
2. These Pixels are interpolated in the image between the vertices. First vertically along the edges and then 
horizontally across the polygon. 

 
3. Each such interpolated Pixel is sent to PixelShader which determines the final color of the image at that 
position. 
 
Most of the code you have written is to perform the second step. There is not that much code in VertexShader 
and PixelShader. The good news is that to render more sophisticated images, e.g. with illumination and texture 
mapping, you do not need to add things to the second step. You just need to alter VertexShader, PixelShader and 
the interpolation function. In fact, if you would use a rasterization library like OpenGL or Microsoft's DirectX, 



you would more or less only need to write the first and third step. These libraries completely handle the 
cumbersome second step for you. 
 
 
6.1 Per Vertex Illumination 
 
We will first try to implement the illumination computations for every vertex and then interpolate these values 
across the polygon, similar to how we interpolated zinv. In lab 2 you learned that the direct illumination from an 
omni light source to a surface point can be written as: 
 

D = (P max (r̂ . n̂, 0))/4πr2   (10) 
 
where D is the power of the incoming direct light per surface area. P is the power of the light source, r is a vector 
from the surface point to the light source and n̂ is the normal of the surface. For ideally diffuse surfaces with 
reflectance ρ the total reflected light is then: 
 

R =  ρ * (D+N)   (11) 
 
where N is the incoming indirect illumination reflected from other surfaces. We approximated N as a constant 
term. To implement this illumination model we will store the parameters of the light source as global variables 
just as in lab 2: 
 
vec3 lightPos(0,-0.5,-0.7); 
vec3 lightPower = 1.1f*vec3( 1, 1, 1 ); 
vec3 indirectLightPowerPerArea = 0.5f*vec3( 1, 1, 1 ); 

 
We would initially like to compute the illumination for every vertex in VertexShader. We then need to evaluate 
equation 10 and 11 for every vertex. Besides the global light variables we then need to know the position, normal 
and reflectance at the vertex. It is therefore convenient to add this information to our Vertex-struct: 
 
struct Vertex 
{ 

vec3 position; 
vec3 normal; 
vec2 reflectance; 

}; 

 
Make sure to set this information for every vertex in the Draw-function. After you have done this you will have 
access to this in VertexShader. You can then compute the illumination, but you also need to store it for the 
resulting output Pixel of VertexShader. You therefore need to add another quantity to your Pixel-struct to store 
this: 
 
struct Pixel 
{ 

int x; 
int y; 
float zinv; 
vec3 illumination; 

}; 

 
Now the illumination gets computed for every Vertex in VertexShader. We then want to interpolate this value 
over the polygon before we use it in PixelShader. To do this you need to modify the Interpolation-function so 
that it also interpolates the illumination quantity in Pixel. After you have done this you can simply access the 
illumination in PixelShader and use it when you draw the pixel: 
 
void PixelShader( const Pixel& p ) 
{ 

int x = p.x; 
int y = p.y; 
if( p.zinv > depthBuffer[y][x] ) 
{ 

depthBuffer[y][x] = f.zinv; 
PutPixelSDL( screen, x, y, p.illumination ); 

} 
} 

 



 
 

Figure 6: Illumination computed for vertices and interpolated in between. 
 
 
This should give you the result seen in Figure 6. As you can see the result is similar to the raytracer with 
illumination but not exactly the same. Since we are interpolating the illumination over the surfaces we get less 
detail, but gain speed. 
 
 
6.2 Per Pixel Illumination 
 
To get a more detailed illumination we will now compute unique values for every pixel. We do this by 
evaluating equation 10 and 11 in PixelShader instead of VertexShader. We then need to have access to the 3D 
position that the pixel represents as well as its normal and reflectance. Since we model the normal and 
reflectance as constant over each triangle we do not need to interpolate them. Instead we can store these values 
for the triangle that is currently drawn in global variables: 
 
vec3 currentNormal; 
vec3 currentReflectance; 

 
which we set in the draw function before drawing a triangle. However, the 3D position that the pixel corresponds 
to will be different for different pixels of the triangle and we thus have to interpolate it. You therefore need to 
add it to the Pixel-struct: 
 



 
 

Figure 7: Unique illumination computed for every pixel. 
 
 
struct Pixel 
{ 

int x; 
int y; 
float zinv; 
vec3 pos3d; 

}; 
 
Since we will no longer interpolate the illumination we do not need a variable for it in the Pixel-struct. Also 
since we will not compute the illumination in the VertexShader you can remove the normal and reflectance from 
the Vertex-struct, since they will not be used: 
 
struct Vertex 
{ 

vec3 position; 
}; 

 
Instead of computing the illumination in VertexShader you just need to store the 3D position of the Vertex to the 
corresponding variable in Pixel. Then you should interpolate this value in Interpolation instead of illumination, 
but in the same way though. You will then have access to the 3D position of the pixel in PixelShader and you 
can compute the illumination. You should then get the image seen in Figure 7. However, it is likely that you will 
instead get the result seen in Figure 8, where the illumination looks a bit skew. This happens if you do not 
implement perspective correct interpolation, but just interpolate the 3D position linearly. As long as the light 
source does not move this does not look too bad, but if the light is moving it does not look so good.  
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 8: Unique illumination computed for every pixel, but not using perspective correct  
interpolation for the 3D position of the pixel. 

 
 
When you interpolated the depth z over the image you could not interpolate z linearly. Instead you had to us the 
quantity 1/z to have something that changes linearly in the image. In general if you have some quantity q that 
changes linearly in the 3D world, it will not change linearly in an image created by perspective projection. 
Instead q/z will change linearly in the image. For instance, if we want to interpolate the 3D position p we can 
interpolate p/z linearly, and then after interpolation we can multiply it with z, or equivalently divide with 1/z, to 
get the interpolated 3D position that we want. Make sure that you do this when you interpolate pixels.  
 
Finally, make sure that you can move the light source using the a,w,s,d keys as in the second lab and you are 
done with this lab as well. Your rasterizer should then render the same image as your final raytracer except for 
shadows. This is one of the things that are more difficult to compute in a rasterizer. If you would like to work 
more with your software rasterizer for the optional fourth lab these are things that could potentially be added: 
 

• Shadows 
 

• Loading of general models 
 

• Textures 
 

• Normal mapping 
 

• Parallax mapping 
 
You could also work with the hardware rasterization libraries OpenGL and Microsoft's DirectX. They allow you 
to do rasterization using the GPU of the graphics card, which is designed for this special purpose, rather than 
using the more general but slower CPU, which we have done so far. This should give a significant speed up (e.g. 
by a factor of 100 or more). 


