
 GrIP-vt2009-Föreläsning8-GUI-patterns Cristian Bogdan – 2008-02-19

Sida ‹#›

Patterns in GUI
programming

DH2640 Grafik och Interaktionsprogrammering VT 2009

Cristian Bogdan
cristi@kth.se

OO: No silver bullet
• Fred Brooks (1986)
• It is difficult to get a OO design (classes and

their relations) right from the beginning
• Refactoring is standard practice by now, re-

structure the code without changing overall
behavior as we learn more

• In fact, any domain can be modeled in a large
number of ways, all correct, depending on our
priorities, concerns (see frameworks later)

• Class is maybe not the suitable abstraction
• Pattern: a re-occuring problem and an OO

design that addresses it

Patterns in GUI programming

• GUI is a pioneering area for Object-Oriented
Programming

• Consequently many principles and techniques
originated from GUI programming

• Including many OOP design patterns
• Lecture objectives:

– visit a number of patterns and exemplify their usage in
AWT/Swing

– re-visit MVC and hierarchical MVC and put them on
the pattern map

Designmönster (design
patterns)

• Utgår från arkitekten Christopher Alexanders arbete på
70-talet

• Alexander försökte se mönster i hur man löst
återkommande problem inom arkitektur och skrev en bok
där han beskriver lösningarna
- Alexander, C. et al. (1977). A Pattern Language.
Oxford University Press
- see also Notes on the Synthesis of Form, 1964

• Idén togs upp på allvar inom systemdesign i mitten av
90-talet

• Den mest kända boken är Gamma et al. (1995). Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley (Gang of Four, GOF)

Design patterns
- Documenting design patterns led to the invention of the Wiki

• Namn och generell typ
• Intent
• Also Known As
• Motivation

- problem addressed, set of forces
• Applicability
• Structure (ett UML-diagram)

Design patterns
• Participants (beskr. av klasser som ingår)
• Collaborations (hur klasserna arbetar

tillsammans)
• Consequences (av att använda mönstret)
• Implementation
• Sample code
• Known uses
• Related patterns

 GrIP-vt2009-Föreläsning8-GUI-patterns Cristian Bogdan – 2008-02-19

Sida ‹#›

Pattern Language
• Patterns in a domain form a small

vocabulary of well-known terms
• Thus practitioners in the domain can

communicate easier if they know the
patterns

• “You use this Observer and combine here
with a Template Method”…

• So well-defined patterns will create a
language for that practice

Composite
• Used to represent part-whole hierarchies
• Tree-like structures
• Individual objects and compositions can

be treated uniformly
• Example

– A Frame can contain a Menu and two Panels
– Each Panel can contain simple components

(e.g. Buttons) but also other Panels…

Composite
• Component: java.awt.Component

• Leaf example: Button, JButton…

• Composite superclass:
java.awt.Container

• Composite examples: Panel, Frame

• operation() example: paint(Graphics g)

• JComponent is a subclass of Container
(not Component!), so all Swing
components are composites, thus they
can contain other components

• e.g. Jtable, JMenuBar use this,
JButton doesn’t always

Typically Composite’s operation() iterates
through the children and invokes their
operation()

Strategy

• Define a family of algorithms
• Encapsulate each in an object
• Use them interchangeably
• Algorithms vary independently from their

clients

Strategy examples
• Laying out Components in a Container.

Container just keeps track of which are its
components, does not know/care how they are
positioned

• Pluggable look and feel. The application only
knows the types and position of components, not
their actual look. That is delegated to a painting
strategy

• In the MVC paradigm, if a View has multiple
controllers, they can be regarded as Strategies,
as they are different ways to interpret events that
occur on the View. The view itself is not
concerned with interpreting the events.

LayoutManager as Strategy

 GrIP-vt2009-Föreläsning8-GUI-patterns Cristian Bogdan – 2008-02-19

Sida ‹#›

UI Manager as Strategy

• Själva utritningen är
delegerad till ett s.k. UI
object (för att man ska
kunna ändra look-and-
feel, t.ex.).

UIManager as Strategy

• Plugging another look-and-feel strategy for the
overall application

• We don’t pass an object but a strategy name

// Get the native look and feel class name
String nativeLF = UIManager.getSystemLookAndFeelClassName();

// Install the look and feel
try {

UIManager.setLookAndFeel(nativeLF);
}
catch(Exception e) {
}

Strategy

•Strategy example: java.awt.LayoutManager

•Concrete strategy examples: FlowLayout, BorderLayout, etc

•Context (client) example: java.awt.Container, invokes the strategy
when it needs to position (lay out) its contained Components

Decorator

• Attach additional behavior to an object
dynamically

• Unlike subclassing, it adds behavior at runtime
• Examples:

– Add scrollbars to any component, to be able to show
it in less space than it would take. We do not
know/care about drawing the component (ScrollPane)

– Draw tabs above/near any component, to be able to
switch to another component (TabbedPane)

Decorator Decorator
Example:

• Component: JComponent

• ConcreteDecorator: ScrollPane

•Operation(): paint()

•AddedBehavior():

•draw scrollbars

•Change parameters for the
decorated paint() so that the
decorated component is
painted at the position given
by the scrollbars

 GrIP-vt2009-Föreläsning8-GUI-patterns Cristian Bogdan – 2008-02-19

Sida ‹#›

Other Decorators in Java
• Decorating InputStream and OutputStream
• FileInputStream “knows” how to read bytes
• BufferedInputStream doesn’t know how to read bytes,

but it knows how to buffer what it reads
– Added behaviour: buffering, flushing
– Added state: buffer, buffer size

• To do the actual byte reading, BufferedInputStream will
always need to invoke read() on the decorated stream
(FileInputStream, SocketInputStream, etc).

• All BufferedInputStream needs to know is that the
decorated object is an InputStream

• Other InputStream decorators: DataInputStream,
PushbackInputStream, etc etc

Template Method

• Define the skeleton of an algorithm
• Leave some algorithm steps to subclasses
• Subclasses can thus redefine algorithm

steps without changing the algorithm
structure

Example: Container paint()
• Generic pseudocode

– Ask the Layout Manager to position all the
Components in the container (invoke layout())

– For all components
• set background and foreground colors
• invoke component paint()

Template Method

• Primitive operations: layout(), paint()
• The AWT/Swing template method invokes also

related classes, not just subclasses
• Template method is at the core of frameworks

Frameworks
Koda med klassbibliotek Koda med framework

Min kod

Kod i klassbibliotek

Framework

Min kod,
brukar kallas för callbacks.

•Fundament: we implement the callbacks, but never call
them. We wait for the framework to call them (Hollywood
principle)

•The framework invokes the callbacks when they are
required by its Template Methods

Observer
• Define a one-to-many dependency

between objects
• so that when one object changes state, all

its dependents are notified and updated
automatically

• Example: in Model-View Controller, both
Model-View and View-Controller
relationships are Observer relationships

 GrIP-vt2009-Föreläsning8-GUI-patterns Cristian Bogdan – 2008-02-19

Sida ‹#›

Observer

• Subject: java.util.Observable
• Observer: java.util.Observer
• Subject: java.awt.Component
• Observer: java.awt.event.*Listener

– more specialized observer
– with several finer-grained methods

Re-visiting MVC

• MVC is a combination of more specific patterns
(Observer, Strategy)

• Architectural pattern
• Many patterns have this kind of “typical

combinations” with other patterns
• Swing applies MVC in a hierarchical way

– Besides the “basic” application model, Swing defines
models for its components

– These models will be populated with some processing
and selection of data from the basic model

– In between the “basic” and “component-level” models,
one can define other intermediate models

Separable Model Architecture

• Varje komponent hanterar
view/control.

• Varje komponent har en
modell kopplad till sig.

• Hierarchical MVC
• http://www.javaworld.com/javaworld/jw-

07-2000/jw-0721-hmvc_p.html

• Presentation-Abstraction-
Control (PAC)

Presentation-Abstraction-Control

• The application is a
hierarchy of
cooperating agents

• Presentation:
“visible” agent
behavior

• Abstraction: data
model and
operations

• Control:
– connect P and A
– connect to other

agents

• Top-level agent: system’s
functional core

• Bottom-level: user interfaces

Presentation-Abstraction-Control
• Can be used in complex systems where agents are

heavily concurrent
• E.g. Robots with their various subsystems
• Leads to more rapid interface initialization

– Presentation is not so heavily dependent on Abstraction like View
is on Model in MVC

• In this conceptualization
– Swing components like JTable correspond to bottom-level agents
– Swing components’ model is the Abstraction, their graphical view

is the Presentation
– The MVC overall Model corresponds to the top-level agent
– Intermediate models can easily be accomodated

Bridge

• separate abstraction from implementation so
they can vary independently

• old AWT 1.0 had a native peer (implementation)
for each component (abstraction)

• the peer was different on each platform, drawing
and event treatment was done in native code

• Swing does away with this and draws everything
in Java

• SWT (used by Eclipse) brings back the native
peers in a more efficient way

 GrIP-vt2009-Föreläsning8-GUI-patterns Cristian Bogdan – 2008-02-19

Sida ‹#›

Abstract Factory

• Provide an interface to create families of
related objects

• without specifying their concrete class
• AWT 1.0 used AF to initialize the native

peers
– The interface provided methods for creating

Button peer, List peer, Label peer…
• Swing uses AF to create the UI objects

that do the look-and-feel specific drawing

Other patterns in Swing
• Command: Encapsulate a request as an

object,
– thereby letting you parameterize clients with

different requests
– queue or log requests,
– and support undoable operations
– Supported via javax.swing.Action

• Adapter: Convert the interface of a class
into another interface clients expect
– See the AWT/Swing event adapters

Other GUI-related patterns

• Flyweight: Use sharing to support large
numbers of fine-grained objects efficiently
– E.g. a graphical word processor will not

render each occurence of a letter every time
• Memento: capture and externalize an

object's internal state
– so that the object can be restored to this state

later.
– without violating encapsulation

Pattern types
• Creational

– Abstract Factory
• Structural

– Composite, Decorator, Bridge, Flyweight
• Behavioral

– Strategy, Template Method, Observer,
Command, Memento

• Architectural
– MVC, PAC

