
GrIP-vt2009-Föreläsning9 - Drag and Drop Cristian Bogdan – 2009-02-26

Sida ‹#›

Drag and Drop
programming

Cristian Bogdan
cristi@kth.se

DH2640 Grafik och Interaktionsprogrammering VT 2009

DnD: Drag programming

• Drag gesture identification
– Typically a mouse press, followed by a move (drag)
– Some option keys may be pressed to change the

action
• “Drop source” component (widget)
• Drag cursor/icon
• Drag and drop cancelling gesture (typically Esc

key)
– Current drop destination must find out so it stops

drawing the drop response

DnD: Drop programming
• Location-sensitive response at “drop target”

– “drag under”
– Not the entire area can be dropped on
– Drop may be possible but not precisely at the mouse

location
• Text fields show a caret at the drop point

– Autoscroll to allow dropping on/near list elements not
initially visible

– Open elements of hierarchical structures like trees, to
allow drop over them (sometimes in a new window,
see Mac Finder)

DnD programming: semantics

• Action at drag source: move, copy
– The default action varies!
– E.g. Files dragged on the same volume will be

moved, files dragged between different volumes wil
be copied

– Taking the alternative action is indicated by e.g. Ctrl
(Windows) and Alt (Mac)

• Transparent at the Java API level

• At drop target:
– Insert between two elements,
– Or replace the element under the cursor, etc.

DnD between applications
• Most general
• The drag source and drop target widgets have

no knowledge of each other
– Could be programmed with differnet toolkits

• The communication is restricted to
– Type (flavor) of the transferred object (MIME)
– Data transferred

• To ensure this minimal interface, many details
known at the “drag point” are lost

• Platform support, Java must use native code

Java DnD 1: Home-made
• Simply using listener and paint callbacks
• No need for special APIs
• MouseListener, MouseMotionListener

– Detect drag gesture
– Determine drag cursor location
– Detect drop

• paint() overriding to draw the drag cursor
– Most efficient if done on a Container (JFrame, JPanel) so it

draws over all standard or custom components inside
– Don’t forget to call super.paint() before, so the contained

components are actually painted and updated
• Drop response drawn by repaint (or more specialized

update, like scroll) of drop target component
– Restore its appearance when the drag cursor leaves
– Or when the drag is cancelled



GrIP-vt2009-Föreläsning9 - Drag and Drop Cristian Bogdan – 2009-02-26

Sida ‹#›

Java DnD 1: Home-made
• Advantages

– Easy to make and control to the finest detail
– No new APIs to learn

• Disadvantages
– Typically the container and the “drag source” and

“drop target” components need to know about each
other

• Interdependence, lack of code flexibility
– No DnD between windows, or applications
– No integration with Copy-Paste

• … but enough for the lab

Java Dnd 2: AWT 1.1
• When java started supporting “real” inter-application

DnD, a very flexible API was introduced
• http://java.sun.com/javase/6/docs/technotes/guides/dragndrop/spec/dnd1.html
• http://www.javaworld.com/javaworld/jw-03-1999/jw-03-dragndrop.html

• Before drag: DragGestureRecognizer

• At the drag source
– DragSource, DragSourceContext DragSource(Drag/Drop)Event

• At the potential drop target:
– DropTarget, DropTargetContext, DropTarget(Drag/Drop)Event
– autoscroll

• Data transfer:
– Transferable, DataFlavor
– MIME types of various objects on various platforms

Java DnD 3: AWT 1.1

• Advantages
– Very flexible
– Between windows, between applications
– Integration with Copy/Paste

• DataFlavor, Transferable

• Disadvantages:
– Complex API
– A number of classes to be written for adding

DnD support on a component

Java DnD 3: Swing data transfer
• Provides default data transfer behavior for

standard Swing components. Configurable:
– drag action, drop mode, location-sensitive drop

• http://java.sun.com/javase/6/docs/technotes/guides/swing/1.4/dnd.html
• http://java.sun.com/docs/books/tutorial/uiswing/dnd/index.html

• Drag, Drop, Cut/Copy and Paste behavior of a
component can all be changed mostly with one
class, javax.swing.TransferHandler

• Uses parts of AWT 1.1 DnD, but replaces others
• Calls into the UI platform code, to account for

differences in drag gesture recognition and other
look-and-feel

Java DnD 3: Swing data transfer
• Advantages:

– For standard components, DnD can be done flexibly
– For the default behavior, just call setDragEnabled()

• Disadvantages: not yet ready to use in custom components
– The TransferHandler mechanism tells when a drag occurs over a

target but not when it left the target, or when the drag was cancelled
• getDropLocation() is package-private on JComponent
• so only Swing classes can override it
• http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6448332
• You can use AWT 1.1 DnD: getDropTarget().addDropTargetListener()

in addition to defining a Swing TransferHandler
– TransferHandler has protected methods so it cannot be decorated

(wrapped) to add or alter behavior
• http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4830695

• Standard component TransferHandlers are part of the platform dependent
code so subclassing to alter behavior would need to be done on one class
per platform


