10 Partial Differential Equations:. Time-Dependent Problems

Read sections 11.1, 11.2
Review questions 11.1,11.4-11.9,11.10-11.12, 11.14 - 11.17

10.1 Introduction

The differential equations we considered so far included only one independent variable, so that
only derivatives with respect to this single variable were present. Such differential equations are
called ordinary ones. The independent variable was either time (mostly in the context of initial
value problems) or a one-dimensional space variable (mostly in the context of boundary value
problems). In this section, we start joining the two dependencies. The unknown function (or,
dependent variable) u shall depend on both time t and space x,

u=u(t,x).

The equations for determining u contain partial derivatives of u with respect to both variables.
Therefore, such equations are called partial differential equations. Many basic laws of science
are expressed in terms of partial differential equations, including

Maxwell’s equations describing electromagnetic fields,

Navier-Stokes equations describing the flow of a fluid,

linear elasticity equations,

Schrddinger equations of quantum mechanics,

Einstein’s equations of general relativity.

The aim of this chapter is the introduction of the basic ideas for the numerical approximation
of partial differential equations. Therefore, we will concentrate on a few simple, but typical,
examples. Making things even easier, we assume that the space variable is only one-dimensional.
It is common to use a short-hand notation for the derivatives of the dependent variable u. Let us

define
ot ; X — ox ) tx — dtdx ) tt — atz ) XX — axz )

and so on. Our model examples will be:

Uy =

Heat equation This equation is given by
ut - CUXX, c> 0.

The heat equation is the model of a parabolic equation.



Wave equation Here, the equation reads
utt - CUXX, c> 0.
The wave equation is a model of a hyperbolic equation.

Poisson equation Formally, we are changing the sign of c in the previous equation and set ¢ =
—1. Physically, t is no longer interpretable as a time variable but as a second space variable.
Therefore, we will change the notation,

UXX + Uyy - 0.
Such an equation is called elliptic.

There is a formal definition of parabolic, hyperbolic, and elliptic problems. However, it is of
rather limited value from the application point of view. More heuristically, the following charac-
terization may give some feeling for the physical contents of these notions:

e Hyperbolic partial differential equations describe time-dependent, conservative physical
processes, such as convection, that are not evolving toward a steady state.

e Parabolic partial differential equations describe time-dependent, dissipative physical pro-
cesses, such as diffusion, that are evolving toward a steady state.

e Elliptic partial differential equations describe systems that have already reached a steady
state, or equilibrium, and hence are time-independent.

In the present chapter, we are concerned with parabolic and hyperbolic problems. Elliptic equa-
tions will be considered in the next chapter.
10.1.1 Boundary Valuesfor the Heat Equation

As in the case of ordinary differential equations, a unique solvability of the partial differential
equation requires additional conditions with respect to both the time variable and the space vari-
able. Having the physical characterization of parabolic problems as evolving process in mind,
we will expect that we need initial conditions with respect to time and boundary conditions with
respect to space. Assuming, rather arbitrary,

0<x<1, 0<t<T,
the initial condition at t = 0 becomes
u(0,x) = f(x), 0<x<1

The function f(x) describes the initial state of the system. As boundary conditions with respect
to X, we choose
u(t,0)=a, u(t,1)=_,.



According to our classification, these boundary conditions are both of Dirichlet type. The phys-
ical meaning is that the temperature at the boundary is fixed (by active measures like cooling or
heating). It is also possible to pose Neumann boundary conditions, for example

Ux(t, 1) = O,

which means that there is no heat exchange over the boundary t = 1.

The coefficient ¢ will be taken to be constant. In practice, it may vary over the domain such
that ¢ = c(x). It is even not uncommon that it depends on the solution, ¢ = c(x, u), giving rise to
nonlinear problems.

10.1.2 Boundary Valuesfor the Wave Equation

The reasoning is similar to that for the heat equation. The only difference is that we need two
initial conditions since the wave equation is of second order in t,

u(0,x) = f(x), uw(0,x)=g(x), 0<x<1.

As in the case of the heat equation, we choose Dirichlet boundary conditions with respect to the
space variable,
u(t,0)=a, u(t,1)=_,.

10.2 An Analytical Solution Method: Separation of Variables

The method of separation of variables was introduced as an analytical method for the solution of
partial differential equations. The basic idea consists of the ansatz

u(t,x) = v(t)w(x).

Let us use this decomposition in the heat equation where we assume homogeneous Dirichlet

conditions a = 3 = 0. We obtain
vit) _ w'(x)
=C .
vit)  w(x)
Since the left-hand side depends only on t while the right-hand side depends only on x, both sides
must necessarily be equal to a constant, say (,

V() = wu(t), ow’(x) = pw(x).
The general solution of the first equation is
v(t) =cieM, ¢y constant.

Taking into account the boundary conditions for w, the nontrivial solutions of the second equation
are given by
w(x) =sinktx, 0<x<1, k=1,2

gy
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and the possible values for | are given by
= —ck’®, k=1,2,....
Hence, every function of the form

—ck?t

ug(t,x)=e sinkitx,, k=1,2,...

is a solution of the heat equation. These solutions fulfill the boundary conditions, but not neces-
sarily the initial condition. Since every uy is a solution of this linear differential equation, every
superposition

u(t,x) = %uk(t,x)
K=1

IS a solution, too. Under some circumstances, taking the limit n — oo is possible: If the initial
condition has a convergent Fourier expansion,
f(x) =Y aksinkmx,
2

the solution of the heat equation subject to the initial condition
u(0,x) = f(x), 0<x<1

has the (unique) solution

2 .
e~ TPt i kmx.

u(t,x) = Z ak
K=1
In case of the wave equation, the same procedure can be repeated. Let the boundary condi-
tions be homogeneous Dirichlet conditions again, and g(x) = 0 such that the initial conditions
read

u(0,x) = f(x), ug(0,x)=0, 0<x<1.
If .
f(x) =Y aksinkmx,
2

then the solution can be represented by
u(t,x) = 3 axcos(kmy/ct)sin(kmx).
K=1

The method of separation of variables is not used as a basis for numerical methods.> The
important point is that qualitative properties of the equations and their solutions can be derived.
From the representation of the solution of the heat equation and because of ¢ > 0, we see that the
solution converges toward zero for t — co. Similarly, the solution of the wave equation indicates
undamped oscillations as time evolves.

LIn very rare cases, it can be used nevertheless.



10.3 Semi-discretization

The method of separation of variables for solving partial differential equations suggests to try
something similar when discretizing such equations. Let us start from the ansatz

u(t,x) = v(t)w(x).
In a discretization we could try to mimic this idea:

e The differential equation for w gives rise to a boundary value problem of the type we al-
ready considered in previous paragraphs. Take, for example, a projection method. Then the
space dependency is expressed by a linear combination of basis functions @;(x), - .., @ (X).
This gives rise to

06X = 3 G,
k=1

Equations for the time-dependent coefficients ay,...,0, can be derived using one of the
principles introduced earlier (collocation, least-squares, Galerkin methods).

An idea related to this approach is to split the equation with respect to time and space
variables. In that case, finite difference approximations can be used with respect to the
space variable while the time-dependency remains.

As we will see later, the result of this approach is an initial value problem for ordinary
differential equations. The latter can be solved by standard methods for that purpose. In
this way, the huge library of sophisticated routines can be used efficiently.

The resulting equations form semidiscretizations because one of the independent variables
appears undiscretized. The resulting methods are usually called method(s) of lines. In a
narrower sense, this notion is only used in the context of finite difference discretizations
with respect to space.

e It is possible to exchange the rdle of space and time in the previous approach. More pre-
cisely, a finite difference scheme is applied with respect to time. In every time step, a
discretization of a boundary value problem with respect to space is necessary. An imple-
mentation of this approach is much more involved, but efficient adaptive methods can be
constructed using this idea.

e Instead of discretizing only in one direction at a time, replace all appearing partial deriva-
tives by finite differences. After discretization, only algebraic equations remain. This
approach is very often used in practice because of its inherent simplicity.

In the present section, we will have a look at the method of lines, both for finite difference and
projection discretizations. The third approach will be considered in the next section.



10.3.1 Method of Lines

Consider the heat equation
ut = CUXX

subject to the boundary and initial conditions
u(0,x) = f(x), 0<x<1,
u(t,0)=u(t,1)=0, t>0.
In order to use finite differences with respect to x, let a grid
O=Xo<Xg <+ <Xn<Xpp1=1

be given, where the step size is assumed to be constant for simplicity, x; — xj_1 = AX = const.
The standard approximation is

u(t,Xi+1) — 2u(t,xi) + u(t, xj—1)

u(t, Xi)xx ~ ()2

We will use the approximations y;(t) = u(t, xj) which are obtained by replacing the second deriva-
tive with respect to x by its finite difference approximation,

yf(t>=(A—‘;)z(yma)—2yi<t)+yi_1(t>>, i=1,....n, t>0,

with yo(t) = yn,1(t) = 0 for all t > 0. The initial conditions for y = (y1,...,yn)" are given by

yi(0)=f(xi), i=1,...,n
The system can be written in vector notation as
V() =~ a0
with the well-known matrix
2 -1
-1 2
A=
]
-1 2

We got an initial value problem for ordinary differential equations. In principle, we can throw it
into any initial value solver which we think is appropriate. It is useful to contemplate a little bit
longer about the system. The eigenvalues A; and eigenvectors w() of the matrix A are easy to
compute,

Ai=2-2cos(imAx), i=1,...,n,
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and

w(® = (sin(imAx), sin(2imAX), ..., sin(nimax)) ",  i=1,...,n.
Since all the eigenvalues are positive, the solution converges toward a steady state as we expected
from the analytical considerations. Moreover, for Ax — 0, A1 = O((Ax)?) and A, = O(1) such
that the system becomes very stiff for small step sizes Ax. Hence, implicit methods for stiff
systems must be used.

10.3.2 Semi-discretization by Collocation

As in the case of boundary value problems for ordinary differential equations, let @1(X), ..., @ (X)
be a set of basis functions which fulfill the boundary conditions

& (0)=@(1)=0, k=1,...,n.

The approximate solution is searched in the form

n

0(tx) = 3 ().

k=1

The coefficients oy (t) are determined by a collocation principle. For that, let 0 < x1 <--- <Xp <
1 be n given collocation points. We require that U fulfills the differential equation at these points.

Since
n

k(EX)= 3 AOX), Ga(t0)= Y i),

k=1

this amounts to i

éla’k(t)qk(xi) =c Zlak(t)cdg(x,-), j=1,...,n.

Let us introduce the two n x n-matrices

M = (@j(%i))i,j=1,...n, N= (@ (X)) j=1,...n-
Then the system can be written as
My'(t) = cNy(t),

wherey = (a1,...,0n)T. Assuming that the matrix M is nonsingular, the system can be formally
transformed to an explicit system,

y'(t) =cM Ny(t).
The initial conditions can be derived be requiring
n

4(0,xj) = kzlo(k(O)cg((xj) =f(x;), j=1,...,n



In matrix notation, this gives
My(0) =f.

Standard (stiff) initial value solvers can be applied now. Note that the inverse matrix M does not
need to be computed explicitly. The initial value solvers in MATLAB allow the use of the original
system My’(t) = cNy(t). If localized basis functions are used, the matrices appearing in this
system are sparse such that the computational complexity is comparable to the method of lines.

10.3.3 Semi-discretization for the Wave Equation

Consider the wave equation
Uit = Clxx

subject to the boundary conditions
u(t,0)=u(t,1)=0, t>0,
and the initial conditions
u(0,x) = f(x), uw(0,x)=g(x), 0<x<1.

It is usual to transform this system into a system of first-order equations with respect to time.
This is comparable to what we did for ordinary differential equations. Let us introduce a function
v(t,x) such that

Ut = avy, Vi = aly,

with a = 4/c. If u is smooth enough, it holds

0
Utt == an == —th = —a UX == CUXX-
X X

at
The initial conditions read

X

u(0,x) = f(x), Vv(0,x) = g/g(s)ds.

0

The semidiscretizations can now be derived in the same way as for the heat equation. The
only difference is that, for the same accuracy, the number of unknown coefficient functions has
doubled since we need to approximate u as well as v.?

Note that there are even methods which can be directly applied to the wave equation which lead to second order
initial value problems.



10.4 Fully Discrete M ethods

Now we are interested in deriving numerical methods which lead directly to algebraic equa-
tions. That means that we replace all appearing derivatives in one step by finite differences.
The discretization of the space derivative is rather straightforward. We will always use the stan-
dard symmetric second order approximation. Remembering our considerations for finite differ-
ence methods for initial value problems, the time discretization may be problematic because of
possible stability problems. In principle, explicit or implicit schemes can be applied for time
discretizations. Explicit schemes have the nice property that time stepping is a very cheap pro-
cess while implicit schemes require the solution of a linear system of equations in every time
step. Since the number of discrete variables is typically very large, explicit schemes seem to be
preferable. On the other hand, in the method of lines, stiff initial value problems appeared. So
explicit methods lead to step size restrictions. The question arises how serious this restriction is.
Otherwise, we are required to use implicit methods which are appropriate for stiff problems.

10.4.1 Explicit Time Discretization

Consider the heat equation
Ut = ClUxx

subject to the boundary conditions
ut,0)=a, u(t,1)=p, t>0

and the initial condition
u(0,x) = f(x), 0<x<1

The first step consists of defining a grid by a space grid size Ax and a time step At:

Xi=1Ax, i=0,...,n+1,
ty =kAt, k=0,1,....

Replacing u; with a forward Euler discretization and uyy with the central difference, we obtain

kel k Kok
Ut —uk _ Cui+1_2ui +Ui g
At (Ax)? ’

where we hope for u'i‘ ~ U(ty,X;). Rearranging terms leads to
UL = U (Ul -2k Uk ), i=1,..,n,

where
cAt

(Ax)?
The boundary conditions give

k k
Up =0, un+1:[3, k=0,1,...,



while the initial condition yields
W="F(x), i=41,...,n

The equations describe how the discrete solution can be computed step by step. Using the initial
conditions u?, the values u! for i = 1,...,n are directly computable. Using these values, u? can
be computed and so on.

The important question is how accurate the approximate solution will be. The general answer
to this question is very hard to give. Instead, we will have a look at two main ingredients.
Taking into account our experiences from initial value methods, the two main properties will be
consistency and stability.

Consistency Let u be the exact solution which is assumed to be sufficiently many times differ-
entiable. If we insert this solution into the discrete formula, a certain residual will remain,

u(t+At,x) —u(t,x) _u(t,x+Ax) —2u(t,x) + u(t,x — Ax)
et ax(t,X) = At —C )2 .

This residual is called the local truncation error (or, local discretization error). This definition
is completely analogous to that what we did earlier. By Taylor expansion, the discretization error
can be easily estimated as®
_ 2
eat,ax = O(At) + O((Ax)“).

This result is not surprising, because the forward Euler discretization is first order accurate while
the central finite difference is second order accurate. One says that the scheme is first order
accurate in time and second order accurate in space.

Stability It is tempting to conclude that the global discretization error

E= max [uS—u(te,x)]
i=1...,n
k=1 K

has the same order of convergence as the local error e if At and Ax tend toward 0. For deriving
conditions for such a property to hold, we will write down the recursion in vector notation for
the special case a =3 =0. Forevery k=1,2,..., define

u® = (uk, ..., ub)T.

Then we obtain the recursion
u(k‘l'l) — u(k) — uAu(k)

3For this estimate to hold, u must be very smooth!
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where again
2 -1

-1 2
Denote the eigenvalues of A by A j and the eigenvectors by wl). The set of eigenvectorsw(®, ... w()
forms a basis of R" such that there exist coefficients a, .. .,an with?

*

n
— Z ajw(l)
=1
This gives rise to
u(l) — ( ) uAu( )
< o) < ()
=Y ajw —pA Y ajwV
=1 le J

- n -
— ajW(J)_“Z aJAw(J)
=1
- n -
=Y aw —p Z ajAjwl)
=1
=Y aj(1—prjwtl).

Doing the same computation for k = 1, we obtain

u(z) — (1) _ uAu(l)

n

More generally, it holds
n -
9= 3 a1 -l
=1
From our analytical considerations we know that

u(t,x) -0 for t— oo,

4This is nothing else than a discrete version of the separation of variables!
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This property must hold true if we want to expect convergence of our scheme. From the repre-
sentation of u®) we can conclude that this holds if and only if

1-pAjl<1, j=1,...,n.
Since p as well as A are positive, this holds if and only if
—(1-p\) <1, j=1,...,n
This can be rewritten as )
< j:n},i.l.j,n )\_J
The latter term can be evaluated,

1 1 >1
>

min — = =

j=1...nAj  1—cos(thAx) 1+ cos(TAX)

The last estimate is very tight. If Ax is close to 0, then cos(TiAx) ~ 1. Using the definition of
L = cAt /(Ax)?, the condition becomes

2
at < &
2¢

This condition is a restriction on the relation between At and Ax. If this condition is not fulfilled,
the solution of the difference scheme diverges for k — oo and hence does not provide an accu-
rate approximation of the exact solution. Although derived with an asymptotic (that is, t — oo)
behavior of the solution in mind, this condition is also necessary (and sufficient for a consistent
discretization) for the global error converging to zero if both Ax and At converge to zero. Be-
cause of its importance, the inequality has a special name. It is called the CFL-condition after
its inventors R. Courant, K. Friedrichs, and H. Lewy. The following table gives an impression of
the maximal time step for ¢ = 1 and a given space grid size.

AX At
0.1 0.5-10 2
0.01 |05-10~%
0.001 | 0.5-10°6

Example 10.1. We demonstrate the stability issue at hand of a simple example. In the heat
equation, let a = 3 = 0. The initial condition is chosen to be f(x) = sinTx. We use the forward
Euler discretization with n = 10. According to the CFL-condition, the time step size must be
smaller than 0.0042. With the program below, we compute the numerical approximations for the
time step sizes At = 0.004 (which is on the stable side) and At = 0.0044 (which is unstable). The
time interval chosen ist € [0,2]. The results are plotted in the Figures 1 and 2, respectively. For
those who are curious, I also included a plot of the results for At = 0.0045 in Figure 3. O
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Figure 1: Solution of the example for At = 0.004

function cfl = stabtest(T,dt,n)

dx = 1/(n+1);

cfl = dx 2/(1+cos(pi*dx));

mu = dt/dx"2;
linspace(0,1,n+2)”;
sin(pi*x);
spdiags([-ones(n,1),2*ones(n,1),-ones(n,1)],[-1,0,1],n,n);
speye(n)-mu*A;
0-

~ T >C X
[ | I A

tout
uout
while t+dt*0.1 < T
u(2:end-1) = H*u(2:end-1);
uout = Juout,u];
t = t+Hdt;
tout = [tout,t];
end
surf(tout,x,uout)
xlabel("t”)
ylabel (°x”)
zlabel(Cu?)

t;
u,

Explicit Time Discretization for the Wave Equation Consider now our hyperbolic model
problem, the wave equation,
Utt = ClUxx
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Figure 2: Solution of the example for At = 0.0044

Figure 3: Solution of the example for At = 0.0045
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subject to the boundary conditions
u(t,0)=a, u(t,1)=p, t>0,
and the initial conditions
u(0,x) = f(x), uw(0,x)=g(x), 0<x<1.
The simplest finite difference method is obtained if we use the standard central differences,

KEL ok k=1 gk ok gk
Ui T —2uf U Uiy —2u Uy

@z T (w2

In contrast to the heat equation, there are now three time levels involved in the equation. This
is similar to multistep methods for solving initial value problems. In order to start the recursion,
we need beside

also approximations
ul ~u(At,x), i=1,...,n.

The latter approximation can be obtained a using an explicit Euler starting step,

ul = f(x)+Atg(xi), i=1,...,n.
The boundary conditions provide

us=a, ul,=pB, k=1,2,....
The values on the k + 1-st time level are given by

Uit =20 — Ut (U — 20 Ul ),
where
(at)?

H=C e

Similarly as before, one can easily show that for the local discretization error, it holds
entax = O((A)) +O((A%)?).

Stability can now be investigated as before by using the discrete method of separation of the
variables. The stability condition (or, CFL-condition) is in the present case

A
At < =X

NG

This restriction is much weaker than the CFL-condition for the heat equation. It says that the
time step is only required to be proportional to the space step.
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10.4.2 Implicit Time Discretizations for the Heat Equation

Qualitatively, we expected severe restrictions on the time step size for the heat equation, because
we found in the semi-discrete case that the stiffness of the system increased with a smaller and
smaller space step. A natural idea is to apply implicit methods that are known to work well for
stiff systems. The simplest example of such a method is the implicit Euler discretization in time.
Its application is, for the heat equation

Ut = Clxx,

given by
k k+1 K+1 |, k+1
Uit — u _ Cuiil — 20 U
At (Ax)2 ’
Although the system looks rather similar to the explicit Euler discretization, the important dif-
ference is the appearance of the unknowns on time level k + 1 on the right-hand side. Let again

=1

n.

geeey

cAt

(&x)%
With the well-known matrix A, the system can be equivalently written as
(I +pAuED =y® 4 p k=12,
The vector b takes care of the Dirichlet boundary conditions: If we require
u(t,0)=a, u(t,1)=p, t>0,
we use the discrete boundary conditions
usy=0a, uk,=B, k=1,2,....

Then the vector b contains only zeros with the exception of the first and the last components
which are equal to pa and 3, respectively. Moreover, the initial condition

u(0,x) = f(x), 0<x<1,

yields
wW=f(x), i=41,...,n

In every iteration step, we must solve a linear system of equations with a tridiagonal matrix
| + pA. Even if this can be done in O(n) operations, the amount of work is much larger than for
the explicit methods.® Is this additional effort worth spending? The answer is yes since we will
obtain excellent stability properties.

5As we will see in the next chapter, the discrepancy in the amount of work needed for the explicit and implicit
methods, respectively, increases considerably when the dimension of the space domain increasesto 2 and 3.
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Let us do the stability analysis in the same way as before for the explicit method. Set, for
simplicity, a = 3 = 0. Assume that

n
— Z ajw(J)
=1
and, more general,

n
0 — 5 gl
A

Introducing these expressions into the recursion, we obtain

(I +pA)uk+D =y

n - -
(I 4+pA) Z agkﬂ)w(” =5 a¥wl)
5 (1 pal il = 5 alwl,
=1

This yields
(1+u)\j)a§k+l) = agk), ji=1,...
such that we finally obtain

kty) _ 1 <k>_ NG
a; (1+M7\) viayt, ) 1,...,n.

Resolving this recursion for all steps, we see that

ul = Z ajyiw(l.

J_
Stability is obtained if, for all j=1,...,n, it holds |yj| < 1. Because of Aj > 0 and u > 0, this is
always the case! Hence, the method is stable independently of the relation between the time and
space step sizes. A method with this property is called unconditionally stable.
The local discretization error can be estimated as before. It is no surprise that
eat,Ax = O(At) + O((AX)Z).

For a reasonable approximation, we obtain a restriction on the step size because of accuracy
considerations. Assume that
eat,ax ~ C1At + Cz(AX)z.

Both terms on the right-hand side should have the same order of magnitude. This is the case if
At ~ c3(Ax)2.

This condition resembles the stability condition for the explicit method. But the interpretation of
the condition is different: It became an accuracy condition.
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10.4.3 The Crank-Nicolson Method

We conclude the chapter with one of the most often used early methods because this method fits
easily in the present context. We want to emphasize at this point that more advanced methods
are in common use today which are much more efficient than the Crank-Nicolson method.

The idea is simply to replace the implicit Euler method by the trapezoidal rule. The dis-
cretization is given by

A2 (Ax)2 (Ox)2

k+1 k k+1 _ o k+1 k+1 k 9k k
Ui T—Up  CUitq —2u7 AU Uiy — 2Up U

), i=1,...,n.

In matrix notation,

Eau® 4b, k=1,2,....

KAy kD) — o _
(I—|—2A)u (I 5

By using the methods above, one can show that this method is unconditionally stable and of
second order in both time and space.
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