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Introduction to PDE with Comsol 
 

School-science project: Ion movement 
A blotting paper is wetted by brine, and heavy 
electrodes are placed on it and connected to DC 
electric power.  KMnO4-crystals placed on the wet 
paper are dissolved and violet streaks show the paths 
traced by the ions as they move under the influence of 
the electric field. 
We model this experiment by COMSOL, and first 
formulate the differential equation.  
 
Let the electric field be E = – grad V where V is the electric potential. A charge q experiences the force 
qE, so it moves with velocity v = mqE. The phenomenological coefficient m is called mobility. When the 
ion concentration is n ions/m2 the current density (the flux of electric charge) is 
 F = – σ grad V,  
where σ = nmq2 is  the electric conductivity. The conservation of (ionic) charge becomes 
 ( ) 00 =Δ⇔∇⋅∇= VVσ   
since we assume σ constant. V = 1 V on the left electrode (the anode), and 0 on the right (the cathode). No 
current passes through the paper’s edge, so F.n = 0 or σ grad V.n = 0 where n is the normal to the edge.  
This is the Laplace equation with Dirichlet-conditions on the electrode edges and homogeneous 
Neumann-conditions on the outer boundary, a standard problem.  
 
1. When the problem has been solved we can draw the ion-trajectories r(t).  
We have Vmqdtd ∇−== vr / and use the streamline-plot. The field is shown by arrows (left) 

 
  

2. We visualize also the field strength V∇ by colored surfaces (right).  

3. The resistance between the electrodes is ΔV/I where I is the total current and ΔV the electric potential 
difference. We can compute that by a line integral (boundary integration) over the boundary Γ of 
an electrode, I = σ∇V ⋅ ndl

Γ
∫ . 

+ 
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Formulation of PDE and models 
 
Models – conservation laws and constitutive relations. 
Example: N(r,t) yellow molecules per m3 in a flowing continuum, in Rn, n = 3 
Def. Flux: |F| = # yellow molecules per second through 1 m2 orthogonal to F.  
 
The total flow across a stationary surface S becomes 
 st/sek.  ˆ∫ ⋅=

S
dSQ nF  

If yellow molecules are created at a net rate f(r,t) [st/sec/m3], it is obvious that, if S contains a volume V, 
that 
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which becomes, by the Gauss theorem, 
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Since this holds for any volume V we get 

 
∂
∂t

N(r,t) + ∇ ⋅F(r,t) = f (r, t) , 

the conservation law for yellow molecules. But that is only one equation for the 2 + n unknowns N, f, and 
F. The system becomes closed if we manage to formulate models for F and f expressed in N. 
 
Example.  
1. For molecules which passively follow a given velocity field u(r,t), 
 F = Nu 
In the absence of sources (and sinks) we get 
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If we count all molecules, i.e. the mass density ρ(r,t) [kg/m3], we obtain the equation of continuity of 
continuum mechanics, 

 ( ) 0=⋅∇+ uρ
∂
∂ρ

t
 

 
2. The heat flux in a solid body is, according to the Fourier (phenomenological and empirical) law, 
proportional to the negative temperature gradient, 
 
 ),((...)),( tTkt rrF ∇−=  [W/m2] 
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The rate of change of thermal energy per m3 is
t
TC
∂
∂ρ )()( rr where C is the specific heat J/kg/oK. The 

conservation law for thermal energy becomes the Heat equation 
 

 ( ) fTk
t
TC =∇⋅∇− (...))()(
∂
∂ρ rr  

 
where we also assumed a heat source f W/m3. There is a multitude of similar models for other processes 
(see below). The Comsol model–equation for them reads 
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where the second time derivative is included to cover also Newton’s equation. 
Note: The latter type of boundary condition with non-zero q is called a mixed or radiation condition or  
 Robin-condition, and the term Neumann-condition is then reserved for the case q = 0. 

Other processes modeled by the Comsol equation 
Transversal deflection of membrane:  
 u = displacement, c = membrane (tensile) stress, f = normal load, d = damping coefficient,  
 e = mass density 
Heat conduction (Fourier’s law):   
 u = temperature, c = heat conductivity, f = heat source, e = 0, d = heat capacity;  
 q = heat transfer coefficient 
Diffusion (Fick’s law):   
 u = concentration, c = coefficient of diffusion, f = source; e = 0, d = 1; 
 q = (mass) transfer coefficient 
Stationary DC current in resistive medium (Ohm’s law) – the ion movement example: 
 u = potential, c = conductivity (= 1/resistivity), f = charge source, e = d = 0; 
 q = resistance to ground (at edge) 
Elektrostatics in charge-free dielectric 
 u = potential, c = dielectric coefficient (permittivity), f = 0, d = e = 0 
 r = potential on conductors, q = g = 0 mean insulation 
Steady flow in porous medium (Darcy’s law): 
 u = ”hydraulic head” (pressure), c = Darcy-coefficient, f = volume source, e = d = 0; 

Irrotational ( 0=×∇ u ) incompressible ( 00 =⋅∇⇒= u
Dt
Dρ ) flow: 

 u = velocity potential, c = 1, f = 0; d = e = 0 
 q = g = 0 along impermeable fixed walls; u = 1 on inflow boundary, u = 0 on outflow. 

Variational formulation 
This section shows a means to solve the equation approximately. As example we take a linear problem,  
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This may look a very small problem class, but: 
1. Non–linear equations can be linearized (the Newton method) to produce a sequence of problems of 
type (S). 
2. Transient processes are discretized in time to give a problem (S) to be solved in every time-step. 
 
If u satisfies the differential equation for every x it is called a strong or classical solution. For a strong 
solution ∫

Ω
=Ω⋅− 0)()( dxvfLu  for every function v for which the integral can be evaluated. Conversely, 

if u has two continuous derivatives and ∫
Ω

=Ω⋅− 0)()( dxvfLu  for all v then Lu = f(x) for every x in Ω.  

So far nothing new; but the simple trick of re-writing the integral by the Gauss theorem brings in the 
boundary conditions and gives a wider class of solutions:  
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A function u which satisfies the last relation for every v for which the integral exists is a weak solution. 
The integral formulation is the variational formulation. A strong solution also weak, but the reverse is not 
necessarily true. This is because weak solutions need only square-integrable first derivatives, whereas 
strong solutions must have two pointwise derivatives. So it is easier to construct approximate solutions 
for the variational formulation than for the differential equation. 
 
Ex. 1 Let V be the volume in the derivation of the differential equation above. Take 
 v(x) = 1 for x i V, 0 outside 
The variational formulation is just the integral–form which is the starting point for the derivation. 
 
Ex. 2 Equations in Rn. If Ax = b (the differential equation) then vT(Ax – b) = 0 (variational formulation) 
for all v in Rn. Conversely, if vT(Ax – b) = 0 for n linearly independent v, then the weak solution x is also 
an exact (strong) solution to Ax = b. 
 
Ex. 3 Many models for equilibrium problems are formulated as minimization problems for a potential 
energy. For the deflection of the membrane, 
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Variational calculus shows that: 
first, a minimizer of E must satisfy 
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second, a sufficiently smooth such weak solution must satisfy the Euler-Lagrange differential equation 
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The Galerkin method 
Look for an approximate weak solution uh in an N–dimensional function space Vh, with a basis 

Nkxk ,...,1),( =ϕ . So we wish to determine the coefficients ck in the ansatz (or trial) function 

k
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 so that 
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for a number of suitable test functions vk. In the Galerkin method the choice is kkv ϕ=  and it always 
produces exactly N linear equations Ac = f for the N unknowns ck. The properties of the coefficient matrix 
A depend on the differential equation and the basis functions.  
If, e.g., a and c > 0,  A becomes symmetric positive definite, and there is a unique solution which can be 
calculated stably both by elimination and by iterative schemes. 
 
Notes. 

1. For differential equation problems whose solutions give 
minimum for an energy (e.g. a and c > 0), the Galerkin 
method minimizes the energy over the sub-space Vh. That 
means also that uh is the best possible function in Vh since it 
minimizes the error in the sense 
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2.  The corresponding for linear systems of equations is the following: Let Ax = b have symmetric, 
positive definite matrix A. Then the solution gives min. to 

 xbAxxx TTE −=
2
1)(   

If we look for an approximation in a sub-space WN nR⊂ spanned by wk, k = 1,...,N, (N < n) 
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we must minimize 
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where B is also positive definite, i.e., solve Bc = d. Then, Wc is the best approximation to x in the sense 
 )()(minarg wxAwxWc
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3. The Galerkin method is used also for problems without minimization properties, such as the 
convection-diffusion equation for the concentration u(x,t) 
 
 v ⋅ ∇u = ∇ ⋅ (c∇u) + f (x) 
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where v(x,t) is the velocity field. One often chooses other test-functions than ϕk, and the approximation 
properties of uh are more difficult to discover for such equations.  

Finite Elements 
In the Finite Element method one chooses basis functions which are non-zero only over small 
subdomains, the elements. In 2D, the computational domain Ω is cut up into e.g. triangles (in 3D 
tetrahedra). For the variational equations above, basis functions with square-integrable first derivatives 
are smooth enough, ∞<Ω∇∫

Ω
d2ϕ . The simplest construction is provided by piecewise first degree 

polynomials, one per triangle vertex. Such a basis function is shown in a triangulation of a rectangle, 
below: 

 

Computation of A and b: the assembly process. 
One computes A by summing the contributions from every triangle Tk; the integrals over triangles are 
calculated by numerical quadrature 
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are computed and summed to coefficient matrix A and right hand side b. The contributions come both 
from Ω and the boundary. 
 
All details are left out here, both theoretical and implementational, but you can find them in advanced 
courses on numerical analysis and courses in finite elements.  The point is to show how the whole process 
is automated. The user specifies the geometry, (there are automatic triangulators), the differential equation 
(integration by parts is done by the program) and boundary conditions (should be explained more, but will 
have to wait). The system of equations is then solved by e.g. Gaussian elimination. The solution is post-
processed by visualization of arrows, color surfaces, by computation of interesting quantities like the line 
integral in the ion movement example, etc. 
The choice of basis functions makes the matrix sparse: akj = 0 unless the supports of the basis functions 
involved overlap, i.e., unless nodes k and j are in the same same triangle.  The matrix for the rectangle 
above with 19 nodes has only 93 non-zeros, i.e, in the mean, less than six per row: 



Nada/MatFys                     Intro: PDE and FE with COMSOL MPH p. 7 (8) 
091207, 101030 JOp  
 

 
 

The pattern is symmetric: neighborship is a reflexive relation. Also the values are the same if the 
differential equation is self-adjoint. The pattern will change if the nodes are re-numbered. It is important 
to number such that the elimination process creates not too many new non-zeros. 
The RCM-algorithm gives the left plot and AMD the right. Elisabeth Cuthill & Sean McKee’s (Reverse) 
method numbers neighbor nodes after one another and gives a ”band” structure,– Approx. Minimal 
Degree chooses pivot elements to give minimal fill-in in each step. 

                            
An efficient numbering solves problems like the above with half a million unknowns in seconds on a 
modern PC. So one may solve problems with one node per pixel on the screen! 
But for three-dimensional problems the matrices are less sparse, there are many more unknowns, and 
iterative methods are competitive. For a and c > 0 there are multi-grid methods with computational 
complexity O(N).  a < 0, which appears e.g. for frequency-domain description of time-harmonic wave 
propagation, the Helmholtz equation, is much more difficult.  
 
 
Addendum: Proof of optimality in energy norm - Rn model 
Let Ax = b have symmetric, positive definite matrix A. Then the solution gives min. to 
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2
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for x = A-1b = x*. We look for an approximation in a sub-space WN ⊂ Rn spanned by  
wk, k = 1,...,N, (N < n) 
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where B is also positive definite, i.e., solve Bc* = d. Then, Wc* is the best approximation to x in the 
sense 
 )*()*(minarg* wxAwxWc
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Preliminaries:  
The formula <x,y> = xTAy defines an inner product on Rn. The symmetry and linearity axioms for this are 
easy to check.  
Then, the formula  
 
 ||x||E = <x,x>(1/2) 
 
defines the energy norm. (Exercise. Prove the triangle inequality for || . ||E) 
 
Proof: 
The equation for c says 
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These statements are referred to as ”Galerkin orthogonality”: 
W is orthogonal  
 in the Euclidean sense (xTy) to the residual AWc* – b 
 in the energy sense (xTAy) to the error vector Wc* – x* 
There follows 
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QED 


