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Heat conduction in a disc-brake 
A disc brake may look like this. We neglect heat transport through outer 
cylindrical edges and can make a 2D model of one half, using the symmetry 
plane. The disk is make of carbon steel, 2d = 1 cm thick, with 2Ro = 0.3 m 
diameter, axle hole 2Ri = 0.05 m diameter, and the pad surface area A is a x b = 8 
x 5 cm2 placed c = 5 cm from the axle hole. The density is ρ = 7800 kg/m3, heat 
conductivity k = 50 [W/K/m2], specific heat C = 434 [J/kg/K]. 
Heating and cooling 
The pads press against the disk with force F. With coefficient of friction μ  
(e.g. = 0.8)  the power density [W/m2]  becomes 

 system) coord.(polar  , 22 yxrr
A
FQ +=⋅= ωμ    (1) 

in each point (x,y) in the pad contact area. The total power [W] is 

 P(ω) = ω μF
A

rdxdy
A
∫ = αFω,α = μ ⋅ rav.,rav. = 1

A
rdxdy

A
∫  

where rav is the arithmetic mean over the pad area A. Now, simplify the 
model a little by using instead a power density Qav. which is  constant over 
the pad area, 
 Qav = P(ω)/A =αFω/A 
 
The disk is cooled by the air by power density h T − Text( ) [W/m2] over the 

rest S –A of the disk area where h = 100 W/m2/K, Text = 300K.  
 
The braking process to simulate: 
Suppose that during time t0 you brake a car by four equally loaded disk brakes with constant F.  
Its mass is m, and velocity v0 m/s. At speed v the disks spin at ω = v/D rad/sec (wheel radius D). 
The brake power becomes 8P and  
 
 1/2mdv2/dt = –8Fα(v/D) (enligt Newton)        (2) 
 
Now we can determine F and how ω and the power Q depend on t. The temperature distribution 
in the spinning disk is described by 
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where the velocity field in the disk, spinning as a rigid body, is  
 u = ω(t)(-y,x)       (3) 
in the car-fixed (x,y)-system. The task is to make a movie of the temperature field during the 
braking and a while after, 0 < t < 5t0 
 
Read the whole lab-text! The equation to implement is on the next page and has fewer 
parameters, computed from those given here. Work in the lab session on getting that equation – 

a 
b 

c
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with guessed values for ω, C1, C2 – to run. Later with paper and pen you can do the analysis, put  
the formulas into the comsol-model  – use options/constants and 
options/expressions – and run the simulations, mesh refinements, etc., asked for.. 

“Preparatory” analysis, can be done after first lab session 

1. Explain (1), (2) and (3) and solve (2) – also for t > t0! 
 
2. We must compute α. As one soon notices, the formulas become formidable (Try!), so we do it 
with Comsol at the lab session. rav is easily estimated. Use the estimate to check the number from  
Comsol. 
 
3. Introduction of non-dimensional variables (“primed”) for temp. and lengths  
 ′ x = x / L, ′ y = y / L, ′ T = (T − Text ) /T0  
and proper choice of scales L (length) and T0 (temp.) reduces the model to 
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where the length scale L has already been chosen = Ro. Choose temp-scale T0 and compute C1, 
C2, expressed in the original parameters.  
 
4. Question 4 below needs analytical treatment  Here the equation is integrated over the whole of 
S + A. Motivate 
 a) by Gauss’ sats how it comes to be so,  
 b) why the terms marked disappear.  
You need for the *)-term to use the divergence theorem and that div u = 0, so show that first. The 
area element dxdy is called dΩ here. 
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In the lab-session 
Model: 2D plane, module Heat Conduction, transient, and the pre-selected  Lagrange–P2–
elements.  
Geometry:  Two circles E1 and E2 and a rectangle R1 give E1–E2+R1 as computational domain. 
Keep the interior boundaries, lest the brake pad disappear. Two sub-domains, one for 
the pad (A) and one for the disk outside (S - A ). 
PDE: Define all the parameters and C1 and C2 as constants (options/constants). It is 
possible to write expressions for a constant in terms of other constants (practical for C1 and C2). 
Under physics/subdomain settings, enter coefficients, velocities, initial data. For a 
time-variable ω you may need an entry in options/expressions/global 
expressions. 
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Boundary conditions: Under physics/boundary settings: Along the outer boundary 
insulation, there is a shortcut checkbox for this. 
 
Questions 1-5 are for a steady state where the driver brakes and keeps her foot on the 
accelerator so the speed stays constant. 
1. Make initial mesh, refine the triangulation at least twice and record the max. temperature for 
the three computations.  What is the order of convergence/accuracy? Is this a good way to 
determine the order of accuracy? Are there singularities in the solutiion (temperature field)?  
 
2. Change to P1-element (“Lagrange-Linear”). What is the order of accuracy now? 
 
3. Compute α with Post processing/Subdomain integration. 
 

4. What is the mean temperature outside A, 
  

1
S − A

Tdxdy
S− A
∫ ? Compute with COMSOL and 

check with an analytical approximation. 
 
5. Find parameter values to give qualitatively different looks to the steady temperature field. 
a) almost axi-symmetric, hottest in a ring halfway between inner and outer edges. 
b) a “comet” with head under the pad and curved tail 
c) almost constant temperature. 
 
6  For a transient process, select transient under solver/solver parameters 
Try ultra-fast braking and slow, find a braking time which gives a “comet” temperature 
immediately after the car is brought to a standstill. 
 


