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Design of Bourgogne Organ 

1 Background 
The task is to determine the frequency of the sound obtained by blowing across 
the mouth of a partially filled standard Bourgogne bottle, and to select the 
liquid levels to make a properly tuned bottle organ. 
The rotationally symmetric geometry is defined by the bottom radius R, also 
the radius of the spherical shoulder segment, the height H, the neck radius r 
and length h, the liquid level is x. 

2 Helmholtz Resonator Model 
In the Swedish High-school national physics contest 1994 one learns that the 
contraption is a Helmholtz resonator, where the air in the bottleneck acts as a 
rigid body, and the (large) volume in the bottle itself acts as a spring. The test 
suggests the use of  
 pV = const.,  
i.e. assuming that the process is isothermal. This is erroneous and gives about 
20% error, see below, so one should use instead, with γ = ratio of specific heats 
for air = 1.4, 
 dp/dV = – γ p/V 
i.e. 
 pVγ = const. 
One can deduce from this the lowest resonance frequency. 

3 Analytical and Preparation Tasks 
Q1. Do that. You may assume that H = 3R, R = 3r, and volume = 3/4 litres, that the temperature 
is 20o C, and standard air pressure of 105 Pa, at which conditions the density of air is 1.273 
kg/m3. Plot the frequency as function of x, 0 ≤ x ≤ H. 
Hint: The air plug has mass m ( = …) and is accelerated by the pressure difference acting on its 
cross section area A. If it has velocity v, positive outward, then the volume rate of change of the 
air in the large volume V is 
 dV/dt = Av 
But dp/dt = dp/dV dV/dt so we now have two first order equations for p and v from which the 
resonance frequency can be obtained (by linearization). 

4 COMSOL Calculations 
4.1. Now let us do this by eigenvalue computation in COMSOL. It follows from 
thermodynamics that air pressure deviations p from ambient pressure P are described by the 
wave equation, 
 ptt = c2 ∆ p 
 ∂p/∂n = 0 at solid boundaries 
 p = 0 at the mouth 
c is the adiabatic speed of sound, 340 m/s at the conditions above.  
Q2 a) Plot the frequency as function of x, 0 ≤ x ≤ H, in the same diagram as the curve in 1. 
Q3 b) Comment on the differences between the Helmholtz resonator results and the – probably 
more accurate – COMSOL results. 
READ QUESTION 3 BEFORE DOING THE CALCULATIONS! 
 
4.2. The variation of x is conceptually most easily treated by using the “parametrized 
geometry” Module. An option is to include the pressure waves in the liquid so the liquid level 
becomes a parameter which can be changed without changing the geometry. Here is how: 
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4.2.1. Liquid 
 The liquid is almost incompressible and the correct model is 
  (E)–1ptt = div(1/ρ grad p) 
 where E is the elastic modulus (N/m2) and ρ the density (1000 kg/m3). It is known that 
 the sound speed in water is about 1500 m/s.  
Q4) Deduce the value of E from this. Hint: With constant ρ and E we obtain ptt = E/ρ ∆p 
 
4.2.2. Gas 
 The equation for the gas is 
  (c2ρ)–1ptt = div(1/ρ grad p) 
 
4.2.3. Interface conditions 
 For the whole model, p and ∂p/∂n/ρ must be continuous across the interface. This 
 comes automatically with the FE formulation. 
 
Define ρ as  
 ρ(r,z) = Hs(z − x)ρGas + (1−Hs(z − x))ρLiq  
where Hs(s) is a smoothed Heaviside function jumping from 0 to 1 at s = 0. A similar definition 
is made of the coefficient of ptt (called ea in COMSOL), 

 ea(r,z) = Hs(z − x) 1
ρGasc

2 + (1−Hs(z − x)) 1
ELiq

 

4.3 Hs jumps over a distance d, a parameter to the FLH2S function built into COMSOL. One 
suspects that d must be O(element size) so the jump occurs over a few elements lest the 
quadratures become inaccurate.  
Q5 a) Experiment with small d. Look at the pressure gradient near the interface. If it looks 
spiky d is too small. 
Q6 b) Run the computations. Compare a few with results obtained by changing the geometry. 
 
Q7 5. So armed with the tables, select the eight liquid levels.  
 

5 COMSOL implementation 
 

5.1 Mode 

5.2 Geometry 

5.3 Constants 

5.4 Expressions 

5.5 Solver Settings 

5.6 Convergence Study 
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Appendix 
Adiabatic relation between pressure p and Volume V 
Assume that the process is adiabatic, i.e. no heat exchange with the outside. Then, for the 
volume in the bottle 
 0 = added heat = dQ = dE + p dV 
where 
 p = m/V R T, R = universal gas constant 
Assuming the gas to be calorically perfect, its internal energy per unit mass e depends only on 
temperature:  
 E = me = m cv T = p cv V/R, 
so  
 0 = cv/R d(pV) + p dV = (cv/R + 1) p dV + cv/R V dp; 
 dp/dV|dQ=0 = – (cv + R)/cv p/V = – γ p/V 
where γ is 7/5 = 1.4, a value which can be deduced from the kinetic theory of gases for two-
atomic gases such as air. The isothermal process has 
 dp/dV|dT=0 = – p/V 
so the error is 40% which translates into an error of 20% in wave speed. Use the correct relation 
in problem 1. 
 
 
 


