FUNCTION APPROXIMATION

JOHAN JANSSON

1. TO READ

e Piecewise linear interpolation (117)
e Quadrature (118)

2. GOALS

2.1. Understanding.

Piecewise linear and constant interpolation

Interpolation error

Numerical integration/quadrature (as polynomial intésion, as time-stepping)
Quadrature error

Piecewise linear “hat functions” as basis for piecewisedirfunctions.

L2 projection

2.2. Sills.

e Symbolically show with pen and paper the error estimate fecgwise linear interpola-
tion.

e Construct piecewise linear interpolants in 1D and 2D

e Implement Python functions for quadrature based on piesseliviear interpolation (trape-
zoid method), compare to time-stepping.

3. SOFTWARE INTERFACES

Follow the interface specifications in the template Pythlerifithe “python” subdirectory. Copy
the templates into a new file named “approximation.py” andtiooie adding your own code.
When you're finished or want to check how well you're doingysit your “approximation.py”
(must be named exactly that) to the Web-CAT systeinttgt//webcat.csc.kth.se

Some of the templates make use of the DOLFIN Python modulgeTdocumentation about a

specific class or function, you can use the Python built-cudeentation system (from the Python
prompt):

Simulation Technology Module.


http://webcat.csc.kth.se

2 JOHAN JANSSON

>>> jnport dolfin
>>> hel p(dol fin. Mesh)
Hel p on class Mesh in nodul e dol fin.cpp:

cl ass Mesh(Vari abl e)
| A Mesh consists of a set of connected and nunbered nmesh entities.

>>> hel p(dol fin. Mesh. num verti ces)
Hel p on nethod Mesh_numvertices in nodule _cpp:

Mesh_num vertices(...) unbound dol fin.cpp. Mesh net hod
Mesh_num vertices(Mesh self) -> uint

Ret urn nunber of vertices.

Note that in Python a function may take a function as an argiaed also return a function as
return value. For example, to define the square of a funcjiom can do:

def f(t):
return 1.0/t + t

def square(g):
def gsquare(t):
return g(t)=*g(t)
return gsquare

fsquare = square(f)
print fsquare(t)

Thus f(2.0) gives 2.5 and fsquare(2.0) gives 6.25, as egfect

4. EXAMINATION

The examination of this module consists of the questionavbeEach question gives 1 point (a
guestion with two sub-questions givés$ + 0.5 = 1 point). To pass the module 2.5/4 points are
necessary.

5. QUESTIONS

5.1. Game/interactive simulation. The purpose of this module is to introduce piecewise linear
functions in 1D and 2D. This is a basis for the solution of gédifferential equations by the
finite element method, which you will do in M6: PDE. Look at sewf the sample finite ele-
ment solutions for PDE on the course home page to get a febbfemiecewise linear function
approximation is used to solve advanced problems.

In this module, play around with the functionsdgane/ gane. py and try to do the following
yourself with data of your choice:



FUNCTION APPROXIMATION 3

Play around with piecewise constant and linear interpmtattan you get a feel for the
interpolation error?

Construct a piecewise linear function as a sum of hat basistitns with your own
choice of parameters.

Choose a pointin a 2D mesh and plot the corresponding hat fuasition.

5.2. Piecewiselinear interpolation.

(1) Derive the interpolation error for piecewise lineaeimtolation as in ch. 117, and be able

to explain the steps.

(2) Construct a piecewise linear interpolant of the funetfdz) = ¢=19% on [0, 1] with

5 nodes (4 sub-intervals) such that the maximum intergmiagirror on the whole in-
terval is less thar).15. Note: For linear interpolation the interpolation consten
C = % Hint: Use the error estimate derived in the previous subtime, and compute
the second derivative in the left end point of each sub-iatedmplement the function

i nt er pol ant _exponenti al () toreturn the points. Plot the function and its inter-

polant.

5.3. Quadrature/ Integration.

(1) Implementi nt egrat e() (very similar toprim tive() from module 1). Think

about the error estimates and convergence rates now in tdrpiscewise constant and
linear interpolation (see ch. 118).

(2) The analog of trapezoid integration/quadrature in 2Eaited “vertex” (corner points of

a triangle) quadrature, and is defined by; f(z)dz ~ 23:1 3/(27) Vi, whereK is
one triangle in the domaifvx is the area o andz’ are the vertices ok .
Implementi nt egr at e2D based on piecewise linear interpolation, use the given
vertex quadrature formula on the test casgszr, y) = = and fo(z,y) = 2% + 3. Use
the code below for looping over the triangles and edges imibgh:

mesh

integral = 0.0
for ¢ in dolfin.cells(mesh):

cell _integral = 0.0

for v in dolfin.vertices(c):
cell _integral += ...

integral += ...

dol fin.UnitSquare(4, 4)

5.4. Lo-projection.

(1) (Hard) Compute thé»-projectionP f of the same functiorf (x) = e~1°% as for 1D in-

terpolation with a “mesh” with the same distance betweepaitts (use Unitinterval()),
see the template for sample code. Implement the compuftatibe L.-norm of the error

llellze = \/f: e2dx, where the erroris = Pf — f asthd 2_nor () function in the
template (Hint: in Python it's possible for a function toust another function, use this
to to define a function which is the square of another fungtiom to define a function
for the error). Plotf(z), the interpolant and the projection. Compute the error ef th
projection and the interpolant. Can you explain the diffieeesin error for the piecewise
linear interpolant and thé, -projection?



	1. To read
	2. Goals
	2.1. Understanding
	2.2. Skills

	3. Software Interfaces
	4. Examination
	5. Questions
	5.1. Game/interactive simulation
	5.2. Piecewise linear interpolation
	5.3. Quadrature / Integration
	5.4. L2-projection


