
Övning 4

Convergence of One-step Methods

We want to solve the ODE

dy

dt
= f(t, y), y(0) = y0 (1)

with a one-step method in a fixed interval 0 ≤ t ≤ T . The general form of a one-step method is

un+1 = un + hφ(h, tn, un, un+1), u0 = y0, (2)

where φ obviously depends on f . (Ex. for forward Euler, φ = f .) If φ = φ(h, tn, un) the method
is explicit, otherwise implicit. The approximate solution un actually also depends on h and when
we need to be more precise we write un,h. For simplicity we only consider the case of a constant
timestep, tn = nh.

Consistency

Let y(t) be the exact solution to the ODE. Then the local truncation error, τn,h is defined as the
residual when y(tn) is entered into (2) instead of un, scaled by h,

y(tn+1) = y(tn) + hφ(h, tn, y(tn), y(tn+1)) + hτn,h.

The quantity hτn,h corresponds to the error made in one single step with the scheme, when
starting from y(tn). If

max
n

|τn,h| = O(hp), p ≥ 1,

the method is said to be consistent with an order of accuracy p. Typically, hence,

max
n

|τn,h| ≤ Chp,

where C depends on the size of the derivatives of the solution in the interval.

Example. For Forward Euler we have

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(ξ) = y(tn) + hf(y(tn)) +

h2

2
y′′(ξ), ξ ∈ [tn, tn+1].

Hence, τn,h = hy′′(ξ)/2 and if M = max0≤t≤T |y′′(t)| we can bound

max
0≤n≤Nh

|τn,h| ≤
1

2
Mh,

where T = hNh defines Nh.
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We also define the global truncation error as

en,h := y(tn) − un, (3)

hence the total error at t = tn when the timestep is h. We would expect that en,h should be
roughly the sum of the errors made in each step, hτn, and since we take O(h−1) steps in the
scheme, it should be of the order O(hp). This is indeed true as long as h is small enough and
the scheme remains stable, which will be the case for one-step methods. In that case consistency
with an order of accuracy p is equivalent to |en,h| being O(hp), with p ≥ 1.

Convergence

We say that the method in (2) is convergent if, for every ODE (1), with a Lipschitz function f ,
and for all T > 0,

lim
h→0

max
0≤n≤Nh

||en,h|| = 0, T = hNh.

We have the following convergence theorem.

Theorem 1 Suppose φ is Lipschitz continuous in its last two arguments, uniformly in h and t,
i.e. there are constants L and δ < 1 such that for all 0 ≤ t ≤ T , and 0 < h ≤ 1−δ

L
,

||φ(h, t, un, un+1) − φ(h, t, vn, vn+1)|| ≤ L
[

||un − vn|| + ||un+1 − vn+1||
]

. (4)

Then,

max
0≤n≤Nh

||un,h − y(tn)|| ≤ C max
0≤n≤Nh

|τn,h|, T = hNh, (5)

where C is a constant that depends on T , L and δ but not on h or y(t). Therefore, if the method

is consistent with an order of accuracy p it is convergent and

max
0≤n≤Nh

||un,h − y(tn)|| = O(hp), T = hNh. (6)

Proof: Let us drop the h subscript in the local and global truncation errors, writing τn and
en = y(tn) − un. Then

en+1 = yn+1 − un+1 = y(tn) + hφ(h, tn, y(tn), y(tn+1)) + hτn − un − hφ(h, tn, un, un+1),

= en + h
[

φ(h, tn, y(tn), y(tn+1)) − hφ(h, tn, un, un+1)
]

+ hτn.

By the Lipschitz condition (4),

||en+1|| ≤ ||en|| + hL
[

||y(tn) − un|| + ||y(tn+1) − un+1||
]

+ h max
0≤n≤Nh

|τn|

= (1 + hL)||en|| + hL||en+1|| + h|τ |∞,

where we have defined
|τ |∞ = max

0≤n≤Nh

|τn|.

Since h ≤ 1−δ
L

< 1

L
, we can subtract hL||en+1|| from both sides and divide by 1 − hL,

||en+1|| ≤ β||en|| +
h

1 − hL
|τ |∞, β =

1 + hL

1 − hL
. (7)

We claim that (7) implies

||en|| ≤
1

2L
(βn − 1)|τ |∞. (8)

2 (3)

DN1242 – Numerisk analys, tilläggskurs • HT 2011
Olof Runborg



This holds trivially for n = 0 since ||e0|| = ||y0−u0|| = 0. Suppose that (8) holds for n = 0, . . . , p.
Then, by (7) and (8),

||ep+1|| ≤ {use (7)} ≤ β||ep|| +
h

1 − hL
|τ |∞ ≤ {use (8)} ≤

β

2L
(βp − 1)|τ |∞ +

h

1 − hL
|τ |∞

=
βp+1

2L
|τ |∞ +

1

2L

(

2hL

1 − hL
− β

)

|τ |∞ =
βp+1

2L
|τ |∞ +

1

2L

(

2hL

1 − hL
−

1 + hL

1 − hL

)

|τ |∞

=
1

2L

(

βp+1 − 1
)

|τ |∞.

Hence, (8) then holds also for n = p + 1 and the claim follows by induction.
We note that (8) is of the same form as the inequality that we want to prove (5), provided

that βn is bounded by a constant when n ≤ Nh, i.e. hn ≤ T . Therefore, we try to estimate how
fast βn grows with n. We get

β =
1 + hL

1 − hL
= 1 +

2hL

1 − hL
≤

{

1 + x ≤ ex
}

≤ exp

(

2hL

1 − hL

)

,

and, consequently,

βn ≤ exp

(

2hLn

1 − hL

)

= exp

(

2Ltn
1 − hL

)

≤
{

h ≤
1 − δ

L

}

≤ exp

(

2Ltn
δ

)

≤ exp

(

2LT

δ

)

.

Inserting this estimate of βn in (8) gives the result (5) with

C =
1

2L

(

exp

(

2LT

δ

)

− 1

)

.

If the method is consistent with an order of accuracy p, then |τ |∞ = O(hp) and (6) follows from
(5) since C is independent of h. �

Remark. The Lipschitz condition (4) follows almost always directly from the fact that f itself
is Lipschitz. For instance, for the trapezoidal rule, φ(h, t, un, un+1) = [f(un) + f(un+1)]/2 and

||φ(h, t, un, un+1) − φ(h, t, vn, vn+1)|| ≤
1

2
||f(un) − f(vn)|| +

1

2
||f(un+1) − f(vn+1)||

≤
Lf

2

[

||un − vn|| + ||un+1 − vn+1||
]

,

where Lf is the Lipschitz constant for f . In practice therefore “almost all” reasonable consistent
one-step methods are convergent, in particular, forward/backward Euler, the trapezoidal rule
and Runge-Kutta methods.
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