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Introduction to PDE with Comsol 

School-science project: Ion movement 
A blotting paper is wetted by brine, and heavy 
electrodes are placed on it and connected to DC 
electric power.  KMnO4-crystals placed on the wet 
paper are dissolved and violet streaks show the paths 
traced by the ions as they move under the influence of 
the electric field. 
We model this experiment by COMSOL, and first 
formulate the differential equation.  
 
Let the electric field be E = – grad V where V is the electric potential. A charge q experiences the force 
qE, so it moves with velocity v = mqE. The phenomenological coefficient m is called mobility. When the 
ion concentration is n ions/m2 the current density (the flux of electric charge) is 
 F = – σ grad V,  
where σ = nmq2 is  the electric conductivity. The conservation of (ionic) charge becomes 
   
since we assume σ constant. V = 1 V on the left electrode (the anode), and 0 on the right (the cathode). No 
current passes through the paper’s edge, so F.n = 0 or σ grad V.n = 0 where n is the normal to the edge.  
This is the Laplace equation with Dirichlet-conditions on the electrode edges and homogeneous 
Neumann-conditions on the outer boundary, a standard problem.  
 
1. When the problem has been solved we can draw the ion-trajectories r(t).  
We have and use the streamline-plot. The field is shown by arrows (left) 

 
  

2. We visualize also the field strength by colored surfaces (right).  
3. The resistance between the electrodes is ΔV/I where I is the total current and ΔV the electric potential 
difference. We can compute that by a line integral (Postprocessing/Boundary integration) 
over the boundary Γ of an electrode,  and choose “Expression” as  “nx*ux+ny*uy” for 

σ=1 (assuming the independent variable was named u). 

+ 
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Formulation of PDE and models 
 
Models – conservation laws and constitutive relations. 
 
We consider an example where N(r,t) yellow molecules per m3 in a flowing continuum, in Rn, n = 3. We 
define the flux |F| as the number of yellow molecules per second through 1 m2 orthogonal to F. The total 
flow across a stationary surface S becomes 
  

If yellow molecules are created at a net rate f(r,t) [st/sec/m3], it is obvious that, if S contains a volume V, 
that 

  

which becomes, by the Gauss theorem, 

  

Since this holds for any volume V we get 

 . 

This is the conservation law for yellow molecules. It is a PDE that must hold for anything that moves 
around with flux F and has a creation rate f. It is, however, only one equation for the 2 + n unknowns N, f, 
and F. The system is not closed. To close it we must formulate models for F and f expressed in N. These 
are often called constitutive relations. 
 
Examples. 
  
1. For molecules which passively follow a given velocity field u(r,t), 
 F = Nu 
In the absence of sources (and sinks) we get 

  

If we count all molecules, i.e. the mass density ρ(r,t) [kg/m3], we obtain the equation of continuity of 
continuum mechanics, 

  

 
2. The heat flux in a solid body is, according to the Fourier (phenomenological and empirical) law, 
proportional to the negative temperature gradient, 
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  [W/m2] 
 

The rate of change of thermal energy per m3 is where C is the specific heat J/kg/oK. The 

conservation law for thermal energy becomes the heat equation 
 

  

where we also assumed a heat source f W/m3.  

Other PDE models 
 
The continuity and heat equations discussed above are two well-known examples of PDE models for 
physical processes. There is a multitude of similar PDE models for other processes. In Comsol a general 
catch-all form for many of them is used, the “Comsol model–equation”. (You obtain it by choosing PDE 
Modes/PDE, Coefficient Form/Time-dependent analysis in the model navigator.) It reads1 
 

 

€ 

e∂
2u
∂t 2 + d ∂u

∂t
−∇⋅ c∇u +αu − γ( ) + au + β⋅ ∇u = f             in Ω

On the boundary :  
h⋅ u = r                                      Dirichlet - conditions
n⋅ (c∇u+αu − γ ) + q⋅ u = g        Neumann - conditions
⎧ 
⎨ 
⎩ 

 

 
The a-term describes a reaction term and the α (and β)-terms convective transport, like for the yellow 
molecule example above where α was called u. The second time derivative (the e-term) is included to 
cover also Newton’s equation. Note the different signs for α and β! 
 
Here are some examples of processes covered by the Comsol equation, and the corresponding 
interpretation of the variables and parameters: 
 
Transversal deflection of membrane:  
 u = displacement, c = membrane (tensile) stress, f = normal load, d = damping coefficient,  
 e = mass density 
 
Heat conduction and convection (Fourier’s law):   
 u = temperature, c = heat conductivity, f = heat source, e = 0, d = heat capacity;  
 q = heat transfer coefficient, α = medium velocity vector 
 
Diffusion and convection (Fick’s law):   
 u = concentration, c = coefficient of diffusion, f = source; e = 0, d = 1; 
 q = (mass) transfer coefficient, α = medium velocity vector 
 
                                                 
1 Note 1: The Neumann boundary condition with non-zero q is called a mixed or radiation condition or Robin-
condition, and the term Neumann-condition is then reserved for the case q = 0. 
Note 2: For the Dirichlet boundary condition, Comsol actually shows two equations, where the first one involves 
parameters q and g. This one can often be disregarded; it is only used when the unknown u is a vector. 
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Stationary DC current in resistive medium (Ohm’s law) – the ion movement example: 
 u = potential, c = conductivity (= 1/resistivity), f = charge source, e = d = 0; 
 q = resistance to ground (at edge) 
 
Electrostatics in charge-free dielectric 
 u = potential, c = dielectric coefficient (permittivity), f = 0, d = e = 0 
 r = potential on conductors, q = g = 0 mean insulation 
 
Steady flow in porous medium (Darcy’s law): 
 u = ”hydraulic head” (pressure), c = Darcy-coefficient, f = volume source, e = d = 0; 
 

Irrotational ( ) incompressible ( ) flow: 

 u = velocity potential, c = 1, f = 0; d = e = 0 
 q = g = 0 along impermeable fixed walls; u = 1 on inflow boundary, u = 0 on outflow. 
 

Solving the PDEs numerically 
In this section we discuss the finite element method, which is the main method used by Comsol to solve 
the PDEs numerically. As example we take a linear problem,  
 

        (S) 

 
This may look a very small problem class, but: 
1. Non–linear equations can be linearized (the Newton method) to produce a sequence of problems of 
type (S). 
2. Transient processes are discretized in time to give a problem (S) to be solved in every time-step. 

Variational	
  formulation	
  
If u satisfies the differential equation for every x it is called a strong or classical solution. For a strong 
solution  for every function v for which the integral can be evaluated. Conversely, 

if u has two continuous derivatives and  for all v then Lu = f(x) for every x in Ω.  

So far nothing new; but the simple trick of re-writing the integral by the Gauss theorem brings in the 
boundary conditions and gives a wider class of solutions:  
 

   (V) 

A function u which satisfies the last relation for every v for which the integral exists is a weak solution. 
The integral formulation is the variational formulation. A strong solution also weak, but the reverse is not 
necessarily true. This is because weak solutions need only square-integrable first derivatives, whereas 
strong solutions must have two pointwise derivatives. So it is easier to construct approximate solutions 
for the variational formulation than for the differential equation. 
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Ex. 1 Let V be the volume in the derivation of the differential equation above. Take 
 v(x) = 1 for x i V, 0 outside 
The variational formulation is just the integral–form which is the starting point for the derivation. 
 
Ex. 2 Equations in Rn. If Ax = b (the differential equation) then vT(Ax – b) = 0 (variational formulation) 
for all v in Rn. Conversely, if vT(Ax – b) = 0 for n linearly independent v, then the weak solution x is also 
an exact (strong) solution to Ax = b. 
 
Ex. 3 Many models for equilibrium problems are formulated as minimization problems for a potential 
energy. For the deflection of the membrane, 

   

Variational calculus shows that: 
first, a minimizer of E must satisfy 
  

  

second, a sufficiently smooth such weak solution must satisfy the Euler-Lagrange differential equation 
 

  

The	
  Galerkin	
  method	
  
Look for an approximate weak solution uh in an N–dimensional function space Vh, with a basis 

. So we wish to determine the coefficients ck in the ansatz (or trial) function 

 so that 

  

for a number of suitable test functions vk. In the Galerkin method the choice is  and it always 
produces exactly N linear equations Ac = f for the N unknowns ck. The properties of the coefficient matrix 
A depend on the differential equation and the basis functions.  
If, e.g., a and c > 0,  A becomes symmetric positive definite, and there is a unique solution which can be 
calculated stably both by elimination and by iterative schemes. 
 
Notes. 

1. For differential equation problems whose solutions give 
minimum for an energy (e.g. a and c > 0), the Galerkin 
method minimizes the energy over the sub-space Vh. That 
means also that uh is the best possible function in Vh since it 
minimizes the error in the sense 

 
  

w 

u 

uh 
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2.  The corresponding for linear systems of equations is the following: Let Ax = b have symmetric, 
positive definite matrix A. Then the solution gives min. to 

   

If we look for an approximation in a sub-space WN spanned by wk, k = 1,...,N, (N < n) 

  

we must minimize 

  

where B is also positive definite, i.e., solve Bc = d. Then, Wc is the best approximation to x in the sense 
   (* - proof as addendum) 

 
3. The Galerkin method is used also for problems without minimization properties, such as the 
convection-diffusion equation for the concentration u(x,t) 
 
  
 
where v(x,t) is the velocity field. One often chooses other test-functions than ϕk, and the approximation 
properties of uh are more difficult to discover for such equations.  

Finite	
  Elements	
  
In the Finite Element method one chooses basis functions which are non-zero only over small 
subdomains, the elements. In 2D, the computational domain Ω is cut up into e.g. triangles (in 3D 
tetrahedra). For the variational equations above, basis functions with square-integrable first derivatives 
are smooth enough, . The simplest construction is provided by piecewise first degree 

polynomials, one per triangle vertex. Such a basis function is shown in a triangulation of a rectangle, 
below: 

 

Computation of A and b: the assembly process. 
One computes A by summing the contributions from every triangle Tk; the integrals over triangles are 
calculated by numerical quadrature 
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Integrals of the types  
 
  

 
are computed and summed to coefficient matrix A and right hand side b. The contributions come both 
from Ω and the boundary. 
 
All details are left out here, both theoretical and implementational, but you can find them in advanced 
courses on numerical analysis and courses in finite elements.  The point is to show how the whole process 
is automated. The user specifies the geometry, (there are automatic triangulators), the differential 
equation (integration by parts is done by the program) and boundary conditions (should be explained 
more, but will have to wait). The system of equations is then solved by e.g. Gaussian elimination. The 
solution is post-processed by visualization of arrows, color surfaces, by computation of interesting 
quantities like the line integral in the ion movement example, etc. 
The choice of basis functions makes the matrix sparse: akj = 0 unless the supports of the basis functions 
involved overlap, i.e., unless nodes k and j are in the same same triangle.  The matrix for the rectangle 
above with 19 nodes has only 93 non-zeros, i.e, in the mean, less than six per row: 

 
 

The pattern is symmetric: neighborship is a reflexive relation. Also the values are the same if the 
differential equation is self-adjoint. The pattern will change if the nodes are re-numbered. It is important 
to number such that the elimination process creates not too many new non-zeros. 
The RCM-algorithm gives the left plot and AMD the right. Elisabeth Cuthill & Sean McKee’s (Reverse) 
method numbers neighbor nodes after one another and gives a ”band” structure,– Approx. Minimal 
Degree chooses pivot elements to give minimal fill-in in each step. 
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An efficient numbering solves problems like the above with half a million unknowns in seconds on a 
modern PC. So one may solve problems with one node per pixel on the screen! 
But for three-dimensional problems the matrices are less sparse, there are many more unknowns, and 
iterative methods are competitive. For a and c > 0 there are multi-grid methods with computational 
complexity O(N).  a < 0, which appears e.g. for frequency-domain description of time-harmonic wave 
propagation, the Helmholtz equation, is much more difficult.  
 
Note 
The theory above has neglected convective terms because they are somewhat troublesome: If the process 
is dominated by convection, the standard Galerkin equations give numerical solutions with oscillations. 
There are ways around this, but it would take us too far to explain the details. Suffice it to note, that for 
the Galerkin discretization to work well, the element size h must be limited so that 

  

where C is a constant, somewhat dependent on the basis functions, O(1) in magnitude. 
 
Addendum: Proof of optimality in energy norm - Rn model 
Let Ax = b have symmetric, positive definite matrix A. Then the solution gives min. to 

   

for x = A-1b = x*. We look for an approximation in a sub-space WN spanned by  
wk, k = 1,...,N, (N < n) 

  

by minimizing 

  

where B is also positive definite, i.e., solve Bc* = d. Then, Wc* is the best approximation to x in the 
sense 
  

Preliminaries:  
The formula <x,y> = xTAy defines an inner product on Rn. The symmetry and linearity axioms for this are 
easy to check.  
Then, the formula  
 
 ||x||E = <x,x>(1/2) 
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defines the energy norm. (Exercise. Prove the triangle inequality for || . ||E) 
 
Proof: 
The equation for c says 

  

These statements are referred to as ”Galerkin orthogonality”: 
W is orthogonal  
 in the Euclidean sense (xTy) to the residual AWc* – b 
 in the energy sense (xTAy) to the error vector Wc* – x* 
There follows 
  

For: 

  

QED 


