Övning 2 (2011-11-10)

1 Interpolation

• **Linear interpolation** (similar to Bradie p.352, 5.1.14)

A thermodynamics student needs the temperature of saturated steam under pressure of 6.3 mega-Pascals (MPa).

Estimate the temperature using linear interplation from the following data

Pressure (MPa)	Temperature (°C)
6.0	275
7.0	285

• Polynomial of degree at most n

We would like to determine the polynomial of degree at most 3 which interpolates the following data.

X	-3	1	2	5
у	-23	-11	-23	1

Write down the linear equation system which has to be solved to determined the coefficients of the polynomial.

• **Newton form** (similar to ENM 5.5)

Consider the data set

X	-1	0	1
у	5	1	3

Construct the Newton form of the interpolating polynomial and determine its extremum.

The Newton form of the polynomial interpolating x_0, \dots, x_n

$$P_{\text{newton}}(x) = \sum_{k=0}^{n} a_k \prod_{i=0}^{k-1} (x - x_i)$$

• Error in piecewise linear interpolation (Bradie p.392 exercise 5.15.11, similar to ex. 5.15) Suppose that a table lists the values of the tangent function for angles ranging from 0 to pi/4 in increments of 0.01. What is the largest error that we would introduce by performing linear interpolation between successive values in this table?

2 Least square method (minstakvadratmetoden)

We would like to find the linear function $l(x) = c_1 + c_2 x$ to the given data which minimizes the

error.			
X	2	3	4
l(x)	4	5	1

Calculate the coefficients c_1 and c_2 with help of the least square method.