
Cables and Reels
Comsol Laboration

DN1240, HT12/VT13

1 Physical configuration

We consider a cable that connects a power outlet to a heating element. We want to find out how
much warmer the cable is than the ambient temperature, and where it is warmest. The cable is a
RVOE-twin conductor-cable with a cross section as shown in Figure 1, top. There are two layers
of plastic; the inner one is t (= 0.85) mm thick. The area of the copper conductors A is 1.5 mm2

each and the outer diameter of the cable is Dy (= 9 mm).
In particular we want to compare the cable temperatures in two cases:

1. The cable hangs in free air.

2. The cable is very carefully wound into a reel as in Figure 1, bottom, with Dd = 100 mm.

The specifications for the cable says it can support a higher electrical load in the first case than
in the second case. The difference in temperatures should explain why.
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Figure 1: Top, cable cross section, Bottom, reel geometry
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2 Model

The mathematical model is a boundary value problem for the steady heat equation,

0 = ∇ · (k∇T ) +Q in Ω,

k
∂T

∂n
= h (Text − T ) on Γ. (1)

The domain Ω with boundary Γ is the interior of the cable in the first case, and the whole reel
in the second case. The parameters are the heat conductivity k [W/(mK)], the heating power
per volume Q [W/m3], the heat transfer coefficient h [W/m2/K] (determines the cooling rate)
and the ambient temperature Text [◦C]. Note that k and Q are constant with respect to time and
temperature, but varies in space.
For this example we take h = 10 (free air cooling) and Text = 20. As for the remaining
parameters, the following data may be useful: Copper has electric conductivity σCu of 5.8 107

[Ωm]−1 and heat conductivity kCu = 380 [W/(mK)]. Plastic: no electric conductivity (soQ = 0
in the plastic) and heat conductivity kPl = 0.2 [W/(mK)]. The two kinds of plastic are assumed
identical (except for color . . . ), so no boundary between them is needed.

3 Preparatory analysis

1. Show that the heating power per volume Q in the copper (to leading order) is Q =(
P
UA

)2 1
σCu

where U is the voltage [V ] of the power outlet and P is the power [W ] of
the heating element. You may follow the steps

• What is the total current to give total power P ?
• What is the resistance in l m of the Cu-conductor?
• What is the potential drop? And the power?

(We assume a purely resistive load, and that U2/P is large compared to the cable resis-
tance.)

2. The boundary Γ has arithmetic mean temperature

Tmean =
1
|Γ|

∫
Γ
TdΓ = Text +

2AQ
hp

(2)

where |Γ| = p is the length of the perimeter of the cable cross section. Why is it so?

3. The temperature in the copper has very small gradients compared to the plastic. Quantify
this statement, close to the Cu-Pl interface.
Hint: Which quantity is continuous across the interface?

4. Suppose that the two Cu-regions can be replaced by one central circular disk Cu with area
2A, radius Ri. Then, the equation for T in the plastic becomes

1
r

d

dr

(
r
dT

dr

)
= 0, T (Dy/2) = Tmean (3)

Show (3) and explain why
T (r) = C1 ln r + C2.

and

2πRikPl
dT

dr

∣∣∣∣
r=Ri

= 2AQ.

Determine C1, C2 and the temperature at the Cu-Pl interface.
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4 Lab session work – Task 1

4.1 Free cable

We consider the 2D case and assume all variables are constant in the z-direction along the cable.
The domain Ω is then a cross section of the cable as in Figure 1.
Model: Use 2D, mode
COMSOL Multiphysics/PDE Modes/PDE, Coefficient form/Stationary analysis,

and the pre-selected quadratic polynomial elements.
Geometry: The union of one large and two small circles gives the desired computational do-
main: three sub-domains, two for Cu and one for Pl.
PDE: Define P, U, A, sigCu, ..., Q as constants. It is possible to write expressions,
like for Q, enter the expressions under Options/Constants.
Boundary conditions: Neumann (Robin) type along the outer boundary, with specified heat
transfer coefficient.
Tasks:

1. Compute and plot the temperature field when the voltage is U = 230 [V] and the power
of the heating element is P = 2000 [W]. Record the maximum temperature in the cable.

2. Make an initial mesh, refine the triangulation (at least) twice and note the max-temperatures
for the three calculations. What is the order of accuracy/convergence? Is the use of max-
temperature a good way to assess order of accuracy? Are there singularities in the solution
(temperature field)?

3. Change to linear elements. What is the order now?

4. Check the mean temperature formula (2) above by Boundary integration.

4.2 Cable on a reel

For the reel case we assume radial symmetry and let Ω be a 2D cross-section of the reel. We
use the axisymmetric version of the PDE. Moreover, for simplicity we let the plastic fill up the
whole space between the copper conductors inside the reel.
Model: Use Axisymmetric (2D), mode and then choose
COMSOL Multiphysics/Heat Transfer/Conduction/Steady-state analysis.

We model one half (symmetry) of a cross section of the reel with 5×3×(2 Cu-circles) packed so
the distance between the 2-groups becomes 10 mm. The whole pattern is placed in a rectangle
whose smallest distance to the circles is 2 mm everywhere. Then fill the space between the
Cu-circles with plastic, and cool the outer boundaries like above.
Geometry: There is an "array"-constructor (icon with four small squares) which makes n×m
copies in an n × m pattern. Or manually: First make one Cu-circle, then its neighbor in the
two-group. Form from them a composite object, say G. Copy and translate to make a row. Make
a composite object from these 5 G, say R. Copy and translate R to make three rows. Make a
composite object, say Cu, from the three R. Create the rectangle R1, form the union R1+Cu -
Note: Keep interior borders!
PDE: There are 31 subdomains. But 30 of them have the same data, so select all 31 and give
them Cu-properties and heat source. Then change the data in the (single) plastic domain.
Boundary conditions: The three outer boundaries are as in 4.1, with the same transfer coeffi-
cients. The symmetry plane is insulated (no heat flux).
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Tasks:
1. Compute and plot the temperature field with the same voltage and power as above. Record

the maximum temperature in the cable reel. Also try a color 3D plot and visualize the
heat flux with streamlines (with many start points). Where are the temperature gradients
strongest? Plot |∇T | to show.

2. Suppose the cable melts at 100 ◦C. What is then (approximately) the maximum electrical
load P allowed according to our models for the free hanging cable and the cable on the
reel, respectively?

5 Lab session work – Task 2

5.1 Free cable

As we saw above, the temperature gradient in the copper is very small compared to the one in
the plastic. A model where the copper has constant (but unknown) temperature should be quite
accurate. This temperature would then come in as a Dirichlet boundary condition in a model for
only the plastic. We denote this approximation by T̃ . The model would look like:

∇ ·
(
k∇T̃

)
= 0 in Ω̃,

k
∂T̃

∂n
= h

(
Text − T̃

)
on Γ,

T̃ = TCu on Γ̃,

where Ω̃ is the plastic subset of Ω and Γ̃ is the boundary between the plastic and the copper. The
value TCu corresponds to the "constant" temperature in the copper. It must be determined so the
correct total heat flows through the plastic,∫

Γ
k
∂T̃

∂n
dΓ =

∫
Γ
k
∂T

∂n
dΓ.

How is this done?
Hint: The solution T̃ is an affine function of TCu − Text,

T̃ (x;TCu) = Text + [TCu − Text]T̃1(x), (4)

for some function T̃1(x) independent of TCu and Text. From the requirement on the heat flow
through the plastic it then follows that TCu should be an affine function of the external tempera-
ture and the power per volume,

TCu = Text +KQ. (5)

Tasks:
1. Verify (4) and (5). Derive a theoretical expression forK in terms of T̃1(x) and parameters.

2. Compute K using COMSOL.

3. The relationship (5) should hold also (approximately) for the full model (1) with TCu

taken as a temperature value inside the copper. Verify this empirically by using the COM-
SOL parametric solver (under Solve/Solver Parameters) with Q as parameter.
Determine K this way and compare with 2 above.

5.2 Reel cross section

Where should the element mesh be refined? Try adaptive refinement (select under solver param-
eters) and see if you agree with the algorithm.
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