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Numerical Solution of Initial Value Problems

In this lab IVPs are solved numerically and the following items are stud-
ied:

e systems, linear with constant coefficients

e accuracy and stability

e constant stepsize and adaptive (variable) stepsize

e stiff and non-stiff problems

e parameter study of the solutions of a system of ODEs

Computer Lab 1
INITTIAL VALUE PROBLEMS

In this exercise the following problems are treated:
e linear ODE-systems with constant coefficients (LCC-systems)
e stability of trajectories and critical points

LCC-systems can be solved analytically (see course material) and need there-
fore no numerical method. LCC-systems are treated in mathematical courses,
but are still presented in this course for reviewing purposes since it is easy
to obtain their solution with the expm-function in Matlab and since it also
gives exercise in displaying the solution curves graphically. There are also
a few exercises on the important concept of stability of ODE-systems, both
the stability of solution curves and equilibrium points.

We start by illustrating how a Matlab program for solution of an LCC-
problem can look like:

Introductory example

Given the following second order differential equation:

y' +2) +5y=0



with the initial values y(0) = 0 and 3/(0) = 1. Compute the solution of this
ODE-problem on a suitable ¢t-interval.

Rewrite this scalar problem to the standard form, i.e. as a system of first
order ODEs u’ = Au, which is solved analytically with the expm-function.
Input data to the Matlab program solving this problem consists of the matrix
A, the initial vector u(0) and gridpoint data h and N for the points ¢; =
th,1=0,1,2,..., N, where the solution shall be computed and plotted. The
output from the program is the graph of the solution at these gridpoints.
In the Matlab program below the solution u(t) is stored in a resultmatrix
result. Each column in result corresponds to the solution vector at a
gridpoint ¢;. The first column is the initial vector u(0).
The plotted result is shown in a graph.

A=[0 1;-5 -2];
u0=[0 1]°;t0=0;
h=0.1;N=60;
result=[u0] ;time=[t0];
for k=1:N
t=kx*h;
u=expm (A*xt)*u0;
result=[result ul;
time=[time t];
end
plot(time,result)

This Matlab program plots two curves in the graph. The first row in
the result-matrix corresponds to the solution y(t), while the second row
corresponds to the derivative of the solution z(¢) = y/(t), since u(t) is defined
as (y(t), z(t))T. The initial values of y och z are different in this case so it
is easy to see which curve corresponds to which variable. Otherwise you can
use different plot-symbols for different curves.

Observe that the time step h must be chosen with some care if the plotted
curve is to be smooth. In the left graph A = 0.1 is used as stepsize while
the right graph is plotted with h = 1. With so few points, however, the line
segments building up the curves are clearly seen and the curves gets rough.

With too small time steps, on the other hand say A = 0.001, the com-
putation of the result-matrix will take unreasonably long time. Hence it is
advisable to work out the gridpoint spacing interactively. For other problems
it may also be better to use loglog, semilogx or semilogy instead of plot
to display the important qualitative features of solution curves.
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A. Solution of ODE-systems with constant coefficients
Electric circuit

Given the following simple electric circuit with a voltage source of size F,
a resistance R, an inductance L and a capacitance C'. The components are
coupled in series.

Assume that the circuit is first at rest. The switch is pressed at ¢ = 0 and a
current starts to go through the circuit. Introduce the variable ¢ defined by
the relation ¢ = i, and the following differential equation can be set up:

1
Li+ Ri+ z4=E, q(0) =0, ¢(0)=0

Rewrite this scalar ODE as a system of first order ODEs then write a Matlab
program to solve the problem for the following parameter values of E, L, C'
och R: E=10,L=C=0.1, R=1,10,100, 1000, 10000. Observe that this
ODE-system is inhomogenous.

Plot the solutions y(t) on suitable time intervals and with suitable time
steps. Use the subplot-command to obtain the three graphs in the same
figure.

B) Accuracy of a Runge-Kutta method

In chapter 3 different Runge-Kutta methods are presented. Make a nu-
merical experiment to find the order of accuracy of the following RK-method:

h
Uk:Uk—1+8(k1+k2+4k3)7 t,=t,.1+h, k=1,2,...,N

ki = f(te—1,ux—1)
k2 = f(tk—l + h, Up_1 + hkl)
ks = f(ty—1+ h/2,uk—1 + hki/4 + hky/4)

Implement the method on Van der Pol’s differential equation

2
%%—e(gf—l)%#—yz@, y(O)zl,%(O) =0, e=1, tel0,1]
Run the problem with constant stepsizes using N = 10,20,40,80,160,320 steps
in the t-interval [0, 1]. Estimate the error at t = 1 by computation of ey =
yny —y(1), N = 10,20, 40, 80, 160. Since y(1) is not known exactly, use the
approximation y(1) & Ynmae, Wwhere Nmax = 320. Make a loglog-plot of
lex| as a function of h, and estimate the order of accuracy from the graph.
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Hint 1: Treat the problem as a system on wvector form, both when you
rewrite the second order differential equation to a system of two first order
ODEs and when you program the method.

Hint 2: Be careful to take the correct number of steps to reach ¢t = 1. If you
get the answer order = 1, there is some mistake in your Matlab-code!

C) Stability investigation of a Runge-Kutta method

The stability of a numerical method for IVPs is important when we want
to solve stiff problems. The following ODE-system modeling the kinetics of
a set of three reactions, known as Robertson’s problem, is studied here:

A— B (k) B+C —A+C (ko) 2B — B+ C (ks)

In the reactions above ki, ko and k3 denote the rate constants of the three
reactions. The following set of ODEs describe the evolution of (scaled) con-
centrations of A, B and C' as a function of time ¢:

d
ﬂ = —/{311’1 + /{32.1‘21’3, l’1<0) =1
dt
d
% = l{ill‘l — kQIQ.Tg — /{Zg.Tg, .TQ(O) = 0
dl‘g
— = ksry,  w3(0) =0

The rate constants have the values: k; = 0.04, ky = 10%, k3 = 3 - 107.

C1) Constant stepsize experiment

If Robertson’s problem is solved with an explicit method the stepsize has
to be very small to avoid numerical instability. Use the Runge-Kutta method
given in A) on Robertson’s problem when the t-interval is [0,1]. Run the
problem with constant stepsizes corresponding to N = 125, 250, 500, 1000, 2000
steps and find the smallest number of steps (from the 5 given) needed to ob-
tain a stable solution. Plot the solution trajectory in a loglog-diagram for
the solution computed with the smallest step.

C2) Adaptive stepsize experiment using Matlab functions

There are several IVP-solvers in Matlab. Use the command >>help funfun
to see which are available. To get more information about one of them, say
ode23, give the command >>help ode23. In order to control e.g. accuracy
parameters you also need to read about the function odeset. When the
problem is stiff you need a stiff IVP-solver, e.g. ode23s.

There are several ways to find demo examples in Matlab. If you give
the command >>demo and follow the path MATLAB, Numerics, Differen-
tial Equations, you find a number of examples to look at, e.g. vdpode and



rigidode. You can run the demo programs and see the graphical output
and you can also see the Matlab code.
Make the following numerical experiments on Robertson’s problem:

e Use the non-stiff IVP-solver ode23 on the t-interval [0, 1] for differ-
ent relative tolerances: RelTol = 1072,107%,107°,10% and record the
number of steps taken by ode23. Make a graph of the stepsize h as
function of ¢ for one of the tolerances.

e Run the stiff [IVP-solver ode23s on the t-interval [0, 1000] for the same
relative tolerances as above and record the number of steps taken by
ode23s. Make a graph of the stepsize h as function of ¢ for one of the
tolerances.

D) Parameter study of solutions of an ODE-system

Make a parameter study for the following problems taken from applica-
tions. Choose a method (order of accuracy must be at least two) yourself.
Present the result graphically in a suitable way. Think about the following
possibilities and choose what you think is best:

e one or several graphs (using subplot) in the figure window?
e linear or logarithmic scales?

e in the graphs: title, x-label, y-label

Problem 1: Particle flow past a cylinder

A long cylinder with radius R = 2 is placed in an incompressible fluid
streaming in the direction of the positive z-axis. The axis of the cylinder
is perpendicular to the direction of the flow. The position (x(t),y(t)) of a
flow particle at time ¢ is determined by the start position (2(0),y(0)) and
the ODE-system:

dr R*(2? — %) dy B 2xyR?
dt (22 +y2)2 " dt (22 +y2)2
At t = 0 there are four flow particles at *+ = —4 with the y-positions

0.2,0.6,1.0 and 1.6. Compute and make a graph of the flow curves of the
particles in the t-interval [0, 10]. Use axis equal in the graph!

Problem 2: Motion of a particle

A particle is thrown from the position (0, 1.5) with an elevation angle «
and the velocity vg = 20. The trajectory of the particle depends on «, the
air resistance coefficient k and the ODE-system

d*x drx | dx dy dx
e kdt (dt) + (dt) , x(0) =0, o (0) = 20 cos ()



d?y dy | dx dy dy ,

T = —9.81 —k |E|\/(E>2 + (E)z’ y(0) = 1.5, %(0) = 20 sin («)
For two different values of k, say k = 0.020 and k£ = 0.065, plot the solution
trajectories for a = 30,45 and 60 (degrees). For the graphical presentation,
observe that the model is valid only until the particle touches the ground,
i.e. it is valid only while y > 0. The graph should show the motion in a

xy-coordinate system with ¢ as a parameter.



