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SOLUTIONS

. See the compendium, chapter 2, pg 11. Eigenvalues of the first matrix are A1 = £3i,
i.e. Re(\;) = 0 but they are simple, hence the system is stable (but not asymptotically
stable). Eigenvalues of the second matrix are A2 = 0, i.e. a double eigenvalues with
Re(A;) = 0. We then have to investigate the particular system which is

iLl = 9U2, iLQ =0
which gives uo = C, wu; = 9Ct + D, hence an unstable system.

. The ansatz y'(a) = Ay(a+ h/2) + By(a+ h) + Cy(a + 2h) leads after Taylor expansion to
y'(a) = (A+ B+ C)y(a) + h(A/2 + B +20)y' (a) + h*(A/8 + B/2 +20)y" (a) + O(h?),
hence the linear system of equations

1 1 1\ /A 0
(1/2 1 2) (B):(l/h)
1/8 1/2 2/ \cC 0

and the solution A = —4/h, B =5/h and C' = —1/h, hence

(a+h/2) +5y(a+ h) —y(a+ 2h)
h

y(a) = 2 +om?)

The error term comes from the first neglected term in the Taylor expansion:

4n% 5R%  14R3 T 9w 9
(_EE L ET)Q (a) = —ﬁh y"(a) = O(h7)
. The stability region of Euler’s explicit method, see the compendium chapter 3, pg 13. -
Inserting the right hand side of § = ¢y into the RK-formula gives yx+1 = (1 + hq +
(hq)?/2)yx, hence the stability area in the hg-plane is defined by |1+ hq + (hq)?/2| < 1.

. Se the compendium, chapter 7, pg 12.

. When using linear triangle elements the FEM-solution is piecewise linear, which means that
the FEM-solution @ restricted to a triangle T is linear, i.e. 4 = a + bx + cy. Inserting
the three points gives the following three equations: a +b —2c = 2, a+b+c = 1,
a — 2b+ ¢ = 3 which gives 4(0,0) =a =2

. The curves are called characteristics. The characteristics of the advection equation satisfy
the straight lines x = at + C. If ¢ depends on t we have dx/dt = c(t) = co + c1t, hence
r = cot + c1t?/2 + D.

. The solution should repeat itself periodically. For a 2nd order ODE, the BCs could be
u(a) = u(b), v'(a) = u'(b).



8. Let T'= Tyout + (Tinit — Tout)u, ¥ = Rz, t = at, where « is to be conveniently chosen later.
Insert into the PDE:
a(Crout + (Enzt - Tout)u) — 1 0 ((RCE)2 a(Crout + (Enzt - Tout)u)
d(ar) (Rz)? O(Rx) JO(Rzx)

and we get after some algebraic manipulations:

ou akl O ou
(z* )

or R0z Ox

Now, choose a = R?/k having dimension [m?/(m?/s)] = [s] and the required PDE is
derived. The initial condition:

T(T, O) = Tinit = Tout + (Enit - Tout)u(mv 0) - U(.%, 0) =1

The boundary conditions:

orT Ou

5(0’75) =0— a_x(O’T) =0

8(Tout + (Tim't B Tout)u) —
J(Rx)

where @ = Rf3/k and the dimension of a is [(m - J-m-K)/(m? - K - J)] = 1.

ou
_ﬁ(ﬂnit - Tout)u - %(17 T) = au(L T)

k

10a) z; =ih,i=—-1,0,...,N,N + 1, where h =1/N, ie. 2o =0,y =1

10b) Rewrite first the PDE:
ou  20u 0%

or  wox 012

The MoL gives the ODE-system where the space derivatives are approximated with 2nd
order accuracy:
du; 2 Uip1 —Ui—1 U1 — 20 U1

== ,1=0,1,2,...,N
dr =z 2h + h? ’ ’
This MoL-approximation does not work for ¢ = 0, where x; = 0. At that point we have
to investigate what happens to the right hand side of the ODE using ’'Hopital’s rule:

limx_>o(2u;j(x) +u"(x)) = 3u"(0)

Hence at = = 0, the MolL-discretized PDE is

dug  _up —2ug +u_1
dr h?2

10c) With centraldifference approximations we obtain:

Uy —uU-1 0 UN+1 —UN-1 auy
2h ’ 2h



10d) Eliminating u_1 and uy4; we obtain

% = 372“1];2“0, up(0) = 1
Ccil”lf _ %ui—i-lQ_hUz’—l AR théz +Ui—1’ w(0) =1, i=1.2,...
LZL—TN = 2aun + (=27 2ha)hu2N ks QUN_l), N(0) =1
10e) Since Ju/dT = 0, we obtain
%%(xQ%):OHxQ%:CHu:—%—FD

The constant C' = 0, since the solution should exist at x = 0, hence v = D. From
the boundary condition at x = 1 we obtain u = 0, which is not unexpected, since this
corresponds to T = T,,;, which means that the sphere takes the same temperature as

the environment, when it has cooled off.



