
1

Michael Hanke
CSC NA
September 24, 2009

DN2222
Numerical Algebra

Programming assignment 1

Study the relevant topics before preparing solutions to the assignments.
Reading hints: D means Demmel book Applied Numerical Linear Algebra, L
means the lecture notes Topics in Numerical Linear Algebra.

You are encouraged to work in groups of two, and you may work at any
time. The course assistant, Henrik Holst, will answer questions concerning
these assignments at the scheduled lab sessions.

Hand in a report by November 10, at the Student Expedition! The report
may be hand written, but would preferably include plots and matrices from
Matlab.

Do not hand in your entire Matlab code, only a few lines where the
interesting computations are done. I will not like to see long Matlab pro-

grams or diary files!

A 1. Properties of floating point arithmetic (D 1.4-1.6)

There are several ways to compute the values of a polynomial numeri-
cally. Three of these are:

Sum: p(x) =
∑n

k=0 ckx
k for c a vector of coefficients.

Product: p(x) =
∏n

i=1(x − ri) for ri a set of roots.

Eigenvalue problem: p(x) = det(A − xI) for A an n × n matrix.

The interesting thing is now that these representations behave dif-
ferently numerically in floating point arithmetic. The product can be
computed with a small relative forward error, while the two others only
can be computed with a bounded backward error in the coefficients or
matrix elements. You will feel the difference in the neighbourhood of
a zero of the polynomial and specially if the zero is multiple.

As an example consider the polynomial given by the product and sum

p65 = (x − 6)5 = x5 − 30x4 + 360x3 − 2160x2 + 6480x − 7776

Do the following:

(a) Compare the values of the polynomial computed these two ways.
Plot the values for an interval around the multiple root at x = 6
say [5.992, 6.008] Take 200 points distributed evenly or randomly



2

over the interval. Use the Matlab routines poly, to find the co-
efficients ck when the roots ri are given, and polyval, to evaluate
a polynomial with given coefficients ck. Does the plot give a good
clue to where the polynomial has its zeros?

(b) Compute the roots of the polynomial! You may get any values
in a rather large interval around x = 6. The Matlab routine
roots will give you a set of complex values of ri. Plot them as
points in the complex plane. Use the command axis(’equal’);

to make sure that real and imaginary parts will be scaled in the
same way! You will get a five star of size like (‖c‖ǫ)(1/5) = (7776∗
2.22e−16)(1/5) = .0044. (A much more elaborate excercise of this
is given in D 1 Question 1.20 3 on page 30)

Remark: The routine roots uses the third representation. It finds a
representation of the polynomial as an eigenvalue problem for a spe-
cially chosen matrix A and computes its eigenvalues. In this case this
representation is as ill conditioned as the sum representation. There
are several other matrices that have the same eigenvalues as the poly-
nomial roots. Many of these are better conditioned. We will discuss
eigenvalue computation later in the course.

A 2. Operations on vectors and matrices in Matlab, Gauss elimi-

nation (L 1.1, D 2.3)

Write a Matlab routine for Gaussian elimination without pivoting.
The built in routine, called by the \ (backslash) operator or when
invoking the lu command, does row pivoting.

Try to formulate your routine in terms of operations on vectors and
matrices. At elimination step i, the computation of the multipliers, lj,i,
can be done as an operation on a column vector, taken from the ith
column of the matrix A. Moreover the innermost loop can be replaced
by a rank one modification of the lower southeast part of the matrix,
subtracting the outer product of the column vector from the ith column
of L that was just computed, and the row vector taken from the ith
row of the matrix A.

A 3. The need for pivoting (D2.4.1)

Try the routine you just written to compute a solution x of the simple
2 × 2 system with

A =

[

ǫ 1
2 −3

]

and b =

[

1
1

]

Choose a sequence of smaller and smaller ǫ like 10−k, k = 1 : 17.
Compare the computed solution x̃ to what you got with the built in
routine, it is assumed to be close to the exact solution x̂! Plot the
growth factor and the norm of the error in the solution e = x̃ − x̂ and
residual r = A ∗ x̃ − b, as a function of the pivot ǫ! You will get the
best result using logarithmic scaling, command loglog in Matlab.



3

A 4. Pivoting, singular submatrices (L1.3)

The following matrix,

B =

1 2 3 4 5

6 7 8 9 10

1 2 3 4 2

21 22 20 21 20

17 17 18 20 20

is specially devised to give interesting results when doing Gaussian
elimination without pivoting. Try it yourself! You will get Inf, which
means “infinity” and occurs when a nonzero number is divided by zero,
and NaN, which means “not a number” and occurs when zero is divided
by zero or two infinities are subtracted.

These things occur because the leading 3 × 3 submatrix of B is sin-
gular, giving a zero pivot at step k = 3. Run the standard routine
with pivoting, and no exceptional number will show up, the matrix is
nonsingular.

A 5. Modify the leading element b11 to 1 + ǫ for a small number ǫ ≈ 10−8.
Now the infinities will be large numbers. How large will they be com-
pared to ǫ? What happens with the “not a number”?


