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(3) Most information retrieval systems change with time, when new docu-
ments are added. In LSI this necessitates the updating of the SVD of
the term-document matrix. Unfortunately, it is quite expensive to up-
date an SVD. The Lanczos-based method, on the other hand, adapts
immediately and at no extra cost to changes of A.

5. Classification and pattern recognition

5.1. Classification of handwritten digits using SVD bases

Computer classification of handwritten digits is a standard problem in pat-
tern recognition. The typical application is automatic reading of zip codes
on envelopes. A comprehensive review of different algorithms is given in
LeCun, Bottou, Bengio and Haffner (1998).

Figure 5.1. Handwritten digits from
the US Postal Service database.

In Figure 5.1 we illustrate handwritten digits that we will use in the
examples in this section.

We will treat the digits in three different, but equivalent ways:

(1) 16× 16 grey-scale images,

(2) functions of two variables,

(3) vectors in R
256.

In the classification of an unknown digit it is necessary to compute the
distance to known digits. Different distance measures can be used, perhaps
the most natural is Euclidean distance: stack the columns of the image in a
vector and identify each digit as a vector in R

256. Then define the distance
function

dist(x, y) = ‖x− y‖2.
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An alternative distance function can be based on the cosine between two
vectors.

In a real application of recognition of handwritten digits, e.g., zip code
reading, there are hardware and real time factors that must be taken into
account. In this section we will describe an idealized setting. The problem is:

Given a set of of manually classified digits (the training set), classify a set of
unknown digits (the test set).

In the US Postal Service database, the training set contains 7291 handwrit-
ten digits, and the test set has 2007 digits.

When we consider the training set digits as vectors or points, then it is
reasonable to assume that all digits of one kind form a cluster of points in a
Euclidean 256-dimensional vector space. Ideally the clusters are well sepa-
rated and the separation depends on how well written the training digits are.

Figure 5.2. The means (centroids)
of all digits in the training set.

In Figure 5.2 we illustrate the means (centroids) of the digits in the train-
ing set. From this figure we get the impression that a majority of the digits
are well written (if there were many badly written digits this would demon-
strate itself as diffuse means). This means that the clusters are rather well
separated. Therefore it is likely that a simple algorithm that computes the
distance from each unknown digit to the means should work rather well.

A simple classification algorithm

Training. Given the training set, compute the mean (centroid) of all
digits of one kind.

Classification. For each digit in the test set, compute the distance to all
ten means, and classify as the closest.
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Figure 5.3. Singular values (top), and the first
three singular images (vectors) computed
using the 131 3s of the training set (bottom).

It turns out that for our test set the success rate of this algorithm is
around 75%, which is not good enough. The reason is that the algorithm
does not use any information about the variation of the digits of one kind.
This variation can be modelled using the SVD.

Let A ∈ R
m×n, with m = 256, be the matrix consisting of all the training

digits of one kind, the 3s, say. The columns of A span a linear subspace of
R

m. However, this subspace cannot be expected to have a large dimension,
because if it had, then the subspaces of the different kinds of digits would
intersect.

The idea now is to ‘model’ the variation within the set of training digits
of one kind using an orthogonal basis of the subspace. An orthogonal basis
can be computed using the SVD, and A can be approximated by a sum of
rank-one matrices (3.9),

A =

k
∑

i=1

σiuiv
T

i ,
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for some value of k. Each column in A is an image of a digit 3, and therefore
the left singular vectors ui are an orthogonal basis in the ‘image space of 3s’.
We will refer to the left singular vectors as ‘singular images’. From the
matrix approximation properties of the SVD (Theorem 3.4) we know that
the first singular vector represents the ‘dominating’ direction of the data
matrix. Therefore, if we fold the vectors ui back to images, we expect
the first singular vector to look like a 3, and the following singular images
should represent the dominating variations of the training set around the
first singular image. In Figure 5.3 we illustrate the singular values and the
first three singular images for the training set 3s.

The SVD basis classification algorithm will be based on the following
assumptions.

(1) Each digit (in the training and test sets) is well characterized by a few
of the first singular images of its own kind. The more precise meaning
of ‘a few’ should be investigated by experiment.

(2) An expansion in terms of the first few singular images discriminates
well between the different classes of digits.

(3) If an unknown digit can be better approximated in one particular basis
of singular images, the basis of 3s say, than in the bases of the other
classes, then it is likely that the unknown digit is a 3.

Thus we should compute how well an unknown digit can be represented in
the ten different bases. This can be done by computing the residual vector
in least squares problems of the type

min
αi

∥

∥

∥

∥

z −
k

∑

i=1

αiui

∥

∥

∥

∥

,

where z represents an unknown digit, and ui the singular images. We can
write this problem in the form

min
α
‖z − Ukα‖2,

where Uk =
(

u1 u2 · · · uk

)

. Since the columns of Uk are orthogonal, the

solution of this problem is given by α = UT

k
z, and the norm of the residual

vector of the least squares problems is

‖(I − UkU
T

k )z‖2. (5.1)

It is interesting to see how the residual depends on the number of terms in
the basis. In Figure 5.4 we illustrate the approximation of a nicely written 3
in terms of the 3-basis with different numbers of basis images. In Figure 5.5
we show the approximation of a nice 3 in the 5-basis.
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Figure 5.4. Unknown digit (nice 3) and approximations
using 1, 3, 5, 7, and 9 terms in the 3-basis (top).
Relative residual ‖(I − UkUT

k
)z‖2/‖z‖2 in least squares

problem (bottom).

From Figures 5.4 and 5.5 we see that the relative residual is considerably
smaller for the nice 3 in the 3-basis than in the 5-basis.

It is possible to devise several classification algorithm based on the model
of expanding in terms of SVD bases. Below we give a simple variant.

An SVD basis classification algorithm

Training. For the training set of known digits, compute the SVD of each
class of digits, and use k basis vectors for each class.

Classification. For a given test digit, compute its relative residual in all
ten bases. If one residual is significantly smaller than all the others,
classify as that. Otherwise give up.

The algorithm is closely related to the SIMCA method (Wold 1976,
Sjöström and Wold 1980).


