
1

Michael Hanke
CSC NA
October 21, 2010

DN2222
Numerical Algebra

Programming assignment 2

Sparse matrices, direct algorithms

A short introduction is given in the lecture notes Chapter 2!

In Matlab’s doc browser you will find an instructive description. Choose
MATLAB -> User Guide -> Mathematics -> Sparse Matrices. Some de-
tails for the present assignment are downloadable as “Extra Tips” from the
courses home page.

If you are really interested, read the original paper: Gilbert, John R.,
Cleve Moler, and Robert Schreiber, Sparse Matrices in MATLAB: Design

and Implementation, SIAM J. Matrix Anal. Appl., Vol. 13, No. 1, Jan-
uary 1992, pp. 333-356. (Downloadable as gilbert92sparse.pdf from the
course’s home page).

Test matrices are found on the Matrix Market of the National Institute of
Standards and Technology (NIST). (http://math.nist.gov/MatrixMarket/)

You are encouraged to work in groups of two, and you may work at any
time. The course assistant, Jennifer Grünig, will answer questions concerning
these assignments at the scheduled lab sessions.

Hand in a report by November 26, at the Student Expedition! The report
may be hand written, but would preferably include plots and matrices from
Matlab.

Do not hand in your entire Matlab code, only a few lines where the
interesting computations are done. I will not like to see long Matlab pro-

grams or diary files!

A 1. Simple example: Compare reorderings!

Start with the matrix you get from a finite difference approximation of
the Laplace equation. You get a grid by the command G = numgrid

and a matrix by A = delsq(G)!

Take an appropriate size: start with an L-membrane with n = 15 grid
points along one of the long sides . This is the one that you see when
you start Matlab! Look at the grid matrix G and see how the points
are ordered by columns. Look at the matrix with spy(A).

You will get permutation vectors for band width reduction (RCM) and
approximate minimal degree (AMD) by the calls pr = symrcm(A) and



2

pm=symamd(A). Substructuring, nested dissection, is not implemented,
but there is an option in numgrid that gives that order for a square.
Look at the reordered matrices with spy and compare to what I showed
in the lecture!

Hand in the spy plots of the original and reordered matrices.

Look at the grid G reordered by Reversed Cuthill McKee. You can
use the routine v2g as described in Extra tips. Note that it cannot be
used directly on the permutation vector pr, it must have the inverse
permutation. It is simple to get the inverse permutation by doing the
call

iv = 1:n; rp(pr) = iv;

which gives the inverse permutation in the vector rp.

Try to explain your observations!

Note: The Approximate Minimum Degree ordering of G is different
from the Minimum Degree ordering. Previously, there was an imple-
mentation, symmmd, available in Matlab. However, AMD appears to
be always better than MMD.

A 2. When is sparse factorization of advantage?

The sparse factorization will use much less storage space and fewer
arithmetic operations than a full matrix code. On the other hand, it
needs quite a lot of book keeping to track at which places fill in occurs.
Now we want to see when it is of advantage to use a sparse matrix
code.

Matrix: Take the matrix A as finite difference matrices over a L-
membrane as in previous task.

Right hand side b: Take the vector b as a 1 (one) in one or a set of
contigous positions in the center of the grid G.

Solution x: Plotted over the membrane, it will look like a tent with
poles in those positions where b is one.

You can use the routine

X = v2g(x,G);

to get a matrix with the vector x spread over the grid G and plot it by
the command mesh(X).

(a) Experiment with permutations in sparse code

Let the number of grid points vary. Make up a table of the number
of nonzeros in the original matrix A and the Cholesky factors
for the original ordering and the reorderings RCM and AMD.
Determine the permutations and measure the time using tic;

<command>; toc needed for

i. Permutation: Find the permutation of the indices for the
reordering

ii. Factorization: Compute the LU factors of the reordered ma-
trix

iii. Solution: Solve a system for a new right hand side b



3

Check the solution: Compute the residual r = Ax-b and list ‖r‖!

Start with a moderate grid, say n = 12 points along one side.
When your code works, increase the grid size, say by a factor of
2, until you either run out of memory or the experiment takes
more time than say 3 minutes. Record for which n that happens,
and report which machine you use! It may be different on dif-
ferent workstations or PC:s. Moreover, provide a complete table
containing n and the different measured times.

As a comparison, take time for the built in implementation of
the complete solution of a linear system x = A\b. Include even
these values in your table. I think it uses AMD reordering. The
time may be shorter than the sum of the 3 times above, memory
allocation may take time. In industrial codes you always divide
the process, because the permutation only needs to be done once
for each matrix size, the factorization only once for each matrix
and the solution many times for each matrix.

(b) Compare sparse and full matrix code

Just call
AF = full(A);

and you get a full matrix. Do the same computations as in the
previous task. Record the time and space (use whos) needed,
and report for which matrix sizes the full matrix code is faster
than the sparse one. Be careful, the full matrix may need too
much memory for a much smaller n than a sparse matrix! On my
account, I got Out of memory for n just above 4000.

A note on timing: The Matlab clock ticks very slowly. You might
need to run the shorter operations several times and divide the total
time by the number of repeats.


