
Scientific Computing II

Michael Hanke
School for Computer Science and Communication

November 5, 2010

Contents

1 Basics of Error Analysis 5

1.1 Norms of Vectors and Matrices . 5

1.2 Conditioning of Problems . 9

1.3 Floating Point Numbers . 15

1.4 Rounding Error Propagation . 21

1

2

This paper gives a short introduction into error analysis and construction principles
for numerical algorithms. Besides very general considerations examples from numer-
ical linear algebra are treated in more detail.

This manuscript is a fast and dirty translation of the first chapter of German lecture
notes used at Humboldt University of Berlin.

The basic question to be discussed is the difference betweentheory (formulation of
an algorithm) and practice (implementation on a computer) for numerical algorithms.
Numerical algorithms are usually formulated using the fieldof real numbers. On a
computer, we have only a small finite subset of these numbers available, namely, float-
ing point numbers. Given a single arithmetic operation there is often only a small
difference between the exact result in real numbers and the machine result obtained
after rounding. So, does it matter? Unfortunately, the answer is yes. Therefore we
must have a closer look at the behavior of an algorithm with respect to rounding errors
(“stability”). Note that there is no problem with respect tointeger arithmetic since it is
always exact on a computer. Rounding error analysis is a typical problem of numerical
analysis.

Example 0.1.Consider the following identity in real numbers:

1√
a+b−√

a
−c≡

√
a+b+

√
a

b
−c.

Seia = 1000,b = 0.001,c = 62500. Evaluating both expressions on a handheld cal-
culator with a precision of 8 decimal digits provides us with0.0 for the left expression
while the right one yields 745.568. Which of these results is “more accurate”?

Problem: When implementing mathematically equivalent formula in finite preci-
sion arithmetic the results may be subject to large errors.

Example 0.2.The following expression shall be evaluated:

333.75·b6+a2 · (11·a2 ·b2−b6−121·b4−2)+5.5 ·b8+a/(2 ·b).

Let the data bea = 77617.0, b = 33096.0. On a computer IBM 4381 (agreed, this is
an ancient machine) using the operating system VM and the programming system VS
FORTRAN the following results have been calculated (rounded to 7 decimals)

single precision (6 Hexadecimal digits) 1.172604
double precision (14 Hexadecimal digits) 1.172604
extended precision (28 Hexadecimal digits) 1.172604

The exact results is

−54767
66192

= −0.827396059946821. . ..

Problem:How can one decide if a result is reliable?
As a simple exercise you can implement this problem on a computer of your choice

using a programming environment of your choice. What is the result you obtain?

3

Example 0.3.Let A= (ai j)
n
i, j=1 be a square matrix. We are looking forD = detA. For

the determinantD, we have the explicit expression,

D =
n

∑
i=1

a1i A1i ,

whereA1i denotes the cofactor of the elementa1i . Let zn the number of arithmetic
operations necessary for calculating detA. Then it holds

zn = (n−1)+n+nzn−1

= n(zn−1+2)−1.

Hence it holdszn > n!. For a serial computer with a floating point performance of 1
Gflops this translates to running times of

n = 11, n! = 39961800, t ≈ 0.04s
n = 21, n! = 51090942171709440000, t ≈ 1620a.

Obviously, this is impossible with today’s technology. Will it be possible sometimes
in the future?

(Bakhvalov, 1973) Consider a hypothetic parallel computerwith volumeV. Let
each arithmetic unit be a cube with side length∆. It is reasonable to assume that one
arithmetic operation on that unit takes at a time of∆/c with the speed of lightc. Then,
the number of operations per second is bounded byVc/∆3. To give an example: Let
V = 1km3, ∆ = 10−8cm (approximately radius of an atom). Then the computing speed
is limited by 3·1057 operations per second. At the same time, 100!= 10159.9....

Problem:Mathematical formulae which are very usable in theoretic considerations
are completely unusable in practical computations.

The task of Numerical Analysis consists of the development of efficient, imple-
mentable algorithms for the solution of computational problems together with the pro-
vision of accuracy estimates. Nowadays, we expect even a robust implementation to-
gether with reliablea-posteriorierror estimations. So it requires a deep understanding
of tools and methods from both mathematics and computer science.

When numerically solving a problem a number of unavoidable sources of error are
present:

• Model errors: A process happening in reality must be described by mathemati-
cal expressions. This includes a decision on which properties are essential and
which are negligible. A mathematical model is always an approximation of re-
ality.

• Errors in data: Parameters of the real process are only knownapproximately,
say, up to a certain masurement accuracy.

• Errors in the numerical computation:

4

– Diskretisation errors: Mapping of continuous processes onto discrete val-
ues.

– Representation errors: The representation of numbers is usually connected
with a lost of accuracy, e.g.,π cannot be represented exactly on a computer.

– Truncation errors: Every computation must be finished in finite time. This
means that every algorithm must be finished after finitly manysteps. Prob-
lems for which there does not exist a finite algorithm are usually tackled by
constructing an infinite sequence converging towards the solution sought.
In that case, only finitely many term can be computed which amounts to
truncating the sequence.

– Rounding erros: Arithmetic operations with real numbers can only be done
with a finite precision on a computer.

The theoretical understanding of the problems as well as of the numerical methods and
their implementation is crucial for a critical estimate of computational results.

The following bon mot is attributed to Karl Nickel:

• The (naive) beginner believes in every single digit in a computational result.

• The (experienced) programmer has confidence in half the number of digits.

• The (knowing) pessimist suspects even the sign.

The aim of this notes is to provide you with tools for a rigorous investigation of
the results of computations on a machine. I can only emphasize how important this
is: A (slow) laptop is capable of carrying out more than 109 arithmetic operations per
second. In consequence this means that the computer makes 109 (rounding) errors
every second. Why can you expect that the result is “correct”? More precisely, how
can you be sure that the result has an accuracy which fulfills your requirements?

In order to be more definite we will consider the solution of linear systems of equa-
tions in more detail. On one hand, the underlying analysis and algebra is well-known.
On the other hand, methods of numerical linear algebra are very well investigated.
Nevertheless, a good deal of mathematical machinery will benecessary.
Literature: To be added!

5

1 Basics of Error Analysis

1.1 Norms of Vectors and Matrices

Obviously, vectors and matrices are the elementary components of linear systems of
equations. In order to be able to quantify the errors appearing in the computations with
them (what is a “large” error, what is a “small” error) we neednotions for the distance
of vectors (and matrices) from each other. Our measure of distances will benorms.

Definition. A mapping‖ · ‖ : R
n −→ R is called anorm in R

n if it holds

1. ‖x‖ ≥ 0 for all x∈ R
n, and‖x‖ = 0 if and only ifx = 0.

2. ‖αx‖ = |α|‖x‖ for all x∈ R
n, α ∈ R.

3. ‖x+y‖ ≤ ‖x‖+‖y‖ for all x,y∈ R
n (triangle inequality).

Conclusion. Let‖ · ‖ be a norm inRn. Then it holds:

(i) d : R
n×R

n −→ R with d(x,y) := ‖x− y‖ is a metric inR
n (a measure for a

distance).

(ii) |‖x‖−‖y‖| ≤ ‖x−y‖ ≤ ‖x‖+‖y‖ for all x,y∈ R
n.

Example 1.1. (i) Let p∈ R, p≥ 1.

‖x‖p :=

(
n

∑
i=1

|xi |p
)1/p

.

‖ · ‖p is a norm inR
n.

(ii) The expression

(x,y) := xTy =
n

∑
i=1

xiyi

defines a so-calledscalar productin R
n. Obviously, it holds(x,x)1/2 = ‖x‖2.

Moreover, theCauchy-Schwarz inequality

|(x,y)| ≤ ‖x‖2‖y‖2 for all x,y∈ R
n

holds true.

(iii) ‖x‖∞ := max
i=1,...,n

|xi | defines a norm inRn.

Definition. Let A be am×n-matrix, ‖ · ‖X a norm inR
n, ‖ · ‖Y a norm inR

m. The
value

‖A‖ := sup
x6=0

‖Ax‖Y

‖x‖X
= sup

‖x‖X=1
‖Ax‖Y

denotes theinduced (by‖ · ‖X, ‖ · ‖Y) matrix norm.

6 1 BASICS OF ERROR ANALYSIS

Lemma 1.1. (i) For given‖ ·‖X, ‖ ·‖Y is the induced matrix norm‖ ·‖ : R
m×n → R

a norm.

(ii) For all x ∈ R
n it holds: ‖Ax‖Y ≤ ‖A‖‖x‖X.

(iii) Let additionally R
k be equipped with the norm‖ · ‖Z, and B a k×m-matrix.

Then,
‖BA‖ ≤ ‖B‖‖A‖.

Proof. (i) Obviously, it holds‖A‖ ≥ 0 for all A∈ R
m×n. Moreover:

‖A‖ = 0 iff sup
x6=0

‖Ax‖Y

‖x‖X
= 0

iff Ax= 0 for all x

iff A = 0.

Let α ∈ R. Then:

‖αA‖ = sup
‖x‖X=1

‖αAx‖Y = |α| sup
‖x‖X=1

‖Ax‖Y = |α|‖A‖.

Assume additionallyB∈ R
m×n. Then it holds,

‖A+B‖ = sup
‖x‖X=1

‖(A+B)x‖Y

≤ sup
‖x‖X=1

(‖Ax‖Y +‖Bx‖Y)

≤ sup
‖x‖X=1

‖Ax‖Y + sup
‖x‖X=1

‖Bx‖Y

= ‖A‖+‖B‖.

(ii) Obvious.

(iii) We may estimate:

‖BA‖ = sup
x6=0

‖BAx‖Z

‖x‖X

= sup
Ax6=0

‖BAx‖Z

‖Ax‖Y
× ‖Ax‖Y

‖x‖X

≤ sup
Ax6=0

‖BAx‖Z

‖Ax‖Y
× sup

Ax6=0

‖Ax‖Y

‖x‖X
.

1.1 Norms of Vectors and Matrices 7

Example 1.2. (i) For ‖ · ‖X = ‖ · ‖1, ‖ · ‖Y = ‖ · ‖1 it holds

‖A‖1 = max
j=1,...,n

m

∑
i=1

|ai j | (column sum norm).

(ii) For ‖ · ‖X = ‖ · ‖∞, ‖ · ‖Y = ‖ · ‖∞ it holds

‖A‖∞ = max
i=1,...,m

n

∑
j=1

|ai j | (row sum norm).

(iii) For ‖ · ‖X = ‖ · ‖2, ‖ · ‖Y = ‖ · ‖2 it holds

‖A‖2 = λ 1/2
max (spectral norm),

whereλmax denotes the maximal eigenvalue ofATA.

Remark1.1. (i) The spectral norm is very expensive to compute. Instead of the
spectral norm often the following expressions are used:

‖A‖F :=

(
m

∑
i=1

n

∑
j=1

a2
i j

)1/2

(Frobenius norm),

‖A‖max := n max
i=1,...,m
j=1,...,n

|ai j |

For both expressions, Lemma 1.1 holds if‖ ·‖X and‖ ·‖Y are chosen to be‖ ·‖2.

(ii) If, for all x∈ R
n, ‖Ax‖Y ≤ α‖x‖X, then‖A‖ ≤ α.

A property which is very usable in applications is given in the following definition.

Definition. Two norms‖ · ‖X,‖ · ‖Y in R
n are calledequivalentif there exist constants

m, M > 0 such that
m‖x‖X ≤ ‖x‖Y ≤ M‖x‖X

for all x∈ R
n.

Theorem 1.2.All norms inR
n are equivalent.

Proof. We show that all norms are equivalent to‖ · ‖∞. Since equivalence of norms is
a transitive property, the theorem will be proved. Let‖ · ‖ a norm andei the i-th unit
vector. Then,

‖x‖ = ‖
n

∑
i=1

xie
i‖ ≤

n

∑
i=1

|xi |‖ei‖ ≤ ‖x‖∞

n

∑
i=1

‖ei‖ =: ‖x‖∞M,

8 1 BASICS OF ERROR ANALYSIS

whereM = ∑n
i=1‖ei‖. Moreover,

|‖x‖−‖y‖| ≤ ‖x−y‖ ≤ M‖x−y‖∞,

which implies that‖ · ‖ : (Rn,‖ · ‖∞) −→ R is (Lipschitz-) continuous. On the other
hand,S1 := {x∈ R

n|‖x‖∞ = 1} is closed and bounded. Consequently,‖ · ‖ reaches a

minimumm> 0 on it: m≤‖x̃‖ for all x̃∈S1. If x 6= 0 is any vector, then

∥
∥
∥
∥

x
‖x‖∞

∥
∥
∥
∥

∞
= 1,

i.e.,m≤
∥
∥
∥
∥

x
‖x‖∞

∥
∥
∥
∥

∞
. Consequently,m‖x‖∞ ≤ ‖x‖.

Remark1.2. (i) Using the result above we can use any norm in error estimates.
Practically, one chooses a norm which is most convenient to use. The estimates
are then valid in any norm. The penalty to pay is slightly larger constants due to
the constantsm, M in the equivalence estimates.

(ii) From an application point of view, norms should be chosen in such a way that
they describe exactly what we mean by large or small errors. Usually, there are
a number of “natural” norms available which are dictated by the problem (the
application).

In the following we will usually omit the indices in the denotation of the norms
if there is no fear of ambiguity. It is convenient to use the so-called Landau symbols
O/o for describing the asymptotic behavior of complex functions. They will be defined
below.

Definition. Let f : D ⊆ R
n → R

m andg : D ⊆ R
n → R

k be two mappings.

(i) We write f (x) = O(g(x)) for x→ x0 (x∈ D) if

limsup
x→x0

‖ f (x)‖
‖g(x)‖ < ∞.

(ii) We write f (x) = o(g(x)) for x→ x0 (x∈ D) if

lim
x→x0

‖ f (x)‖
‖g(x)‖ = 0.

(iii) For m= k, we write f (x)
.
= g(x) für x→ x0 (x∈ D) if f (x)−g(x) = o(g(x)).

(iv) For m= k = 1, we write f (x)≤̇g(x) für x→ x0 (x∈ D) if f (x) ≤ h(x)
.
= g(x).

Because of Theorem 1.2 these notions are independent of the choice of the norm.

1.2 Conditioning of Problems 9

1.2 Conditioning of Problems

The numerical solution of a problem consists of computing results (solutions) from
given values (input data) according to well-defined rules.

Example 1.3. 1. Computation of the function value of a scalar functiony = f (x);

2. Solution of a linear system of equationsAx= b.

Let the input data be denoted byd , the results bya, the compuatational rules by
P, then the problem reads in short form

a = P(d).

In Example 1.3, this translates to:

1. d = x, a = y, P = f

2. d = (A,b), a = x, P(d) = A−1b

In general, the input data for numerical computations are known approximately, only.
By deciding which quantities are considered to be input datawe implicitely decide
about which data are considered to be exactly known, and which data must be consid-
ered to be subject to errors.

The accuracy of the data can be described by the absolute and relative errors, re-
spectively,

δx : = x̃−x, ‖δx‖ ≤ ∆x,

‖x̃−x‖ = εx‖x‖, εx ≤ Εx.

For scalar quantities, the relative error can be alternatively defined by ˜x = (1+ εx)x,
|εx| ≤ Εx.

The following observations are crucial for the understanding of accuracy estimates
and the behaviour of numerical algorithms. In general, onlythe error bounds∆x,Εx

are known while the errors are (obviously) unknown. As a consequence,the actual
problem a= P(d) is not distinguishable from any other problem

ã = P(d̃)

where the input datãd fulfill ‖δd‖ ≤∆d and|εd| ≤Ed, respectively. All these problems
are equally valid given the information provided, that is the input dataand the error
bounds. Consequently, we must understand as thesolution of the given problemthe
sets

Aa(d,∆d) := {ã = P(d̃)|‖δd‖ ≤ ∆d},
Ar(d,Ed) := {ã = P(d̃)|‖εd‖ ≤ Ed}.

10 1 BASICS OF ERROR ANALYSIS

In practice, this is impossible since these sets can be very complex. From a practical
point of view, we are interested in simple characteristics of this set. A simple measure
is the diameter of these sets because it mesures the maximal uncertainty (or, error)
in the results. In order to assess the accuracy of ˜a the quantities∆d (resp.Ed) and
diamAa(d,∆d) (resp. diamAr(d,Ed)) must be related to each other. However, even
this task is practically too hard to do. As a replacement, oneususally tries to derive
estimates of the kind

‖P(d̃)−P(d)‖ ≤ L(d,∆d)‖d̃−d‖ (1.1)

‖P(d̃)−P(d)‖
‖P(d)‖ ≤ K(d,Ed)

‖d̃−d‖
‖d‖ (1.2)

whereL, K shall berealistic constants. Obviously, the expressionL(d,∆d)∆d is an
overestimation of diamAa(d,∆d). The larger the constantsL or K are, the larger will
be the uncertainty (error) in the result of the problemP for a given error bound of the
input data. If such an estimate does not exist, then the errors in the result may become
arbitrarily large! The latter situation makes any calculation meaningless.

Stop here shortly. It’s a good point to contemplate about thesetting. Proceed only
when you have understod the ideas.

Definition. (i) The constantsL (K) are called anabsolute (relative) condition num-
ber of P.

(ii) The problemP is calledwell conditionedif L or K are not too large.

(iii) If there exist estimates of the type (1.1), (1.2), thenP is calledcorrectly posed.
Otherwise,P is called anill-posedproblem.

Remark1.3. (i) If L is an absolute condition number, andd 6= 0, P(d) 6= 0, then
K := L ‖d‖

‖P(d)‖ is a relative condition number.

(ii) Correctness of the problemP is equivalent to the (Lipschitz-) continuous depen-
dence of the solution from the data.

Remark1.4. The computation of condition numbers is often a very hard problem and
may require very deep mathematical tools. This is especially true for problems like
partial differential equations, optimization problems etc. Sometimes it is possible to
obtain an asymptotic estimate of the condition number by using differential calculus.

Let D ⊆ R
n open,P : D −→ R

m andd ∈ D be given. Moreover, let∆d be a bound
for the absolute error. In order to distinguish condition numbers for different problems
we will use an additional index. As an example, (1.1) will be written like

‖ã−a‖ ≤ LP(d,∆d)‖d̃−d‖, ‖d̃−d‖ ≤ ∆d, d̃ ∈ D,

with a = P(d), ã = P(d̃). In general,LP is very hard to compute sinceP can be very
complex. Since we are essentially only interested in the order of magnitude ofLP, it

1.2 Conditioning of Problems 11

is sufficient to know approximations of it. This aim will be reached by comparingP
with easier accessible functionsh.

Let h : D −→ R
m be a function with

P(d̃) = h(d̃)+o(d̃−d) für d̃ −→ d, d̃ ∈ D. (1.3)

This is a quantification of the requirement thath is a close approximation ofP in a
(possibly small) neighborhood ofd. Obviously, taking the limitd̃ −→ d leads to

P(d) = h(d).

Let nowLh(d,∆d) be an absolute condition number ofh:

‖h(d̃)−h(d)‖ ≤ Lh(d,∆d)‖d̃−d‖.

Hence, it holds

‖P(d̃)−P(d)‖ ≤ ‖P(d̃)−h(d̃)‖+‖h(d̃)−h(d)‖

≤
(

o(d̃−d)

‖d̃−d‖
︸ ︷︷ ︸

−−−→
d̃−→d

0

+Lh(d,∆d)

)

‖d̃−d‖.

This means that, for sufficiently small∆d, it holds

LP(d,∆d) ≈ Lh(d,∆d). (1.4)

Consider the scalar casen = m= 1 first. Easy structured functions are, for example,
linear functions

h(d̃) = α(d̃−d)+β .

For such a function, we have obviouslyLh(d,∆d) = |α|. SinceP(d) = h(d), it holds
β = P(d). We must determineα in such a way that (1.3) holds. Substitution yields

P(d̃) = α(d̃−d)+P(d)+o(d̃−d)

P(d̃)−P(d)

d̃−d
= α +

o(d̃−d)

d̃−d
. (1.5)

Because of lim
d̃−→d

o(d̃−d)

d̃−d
= 0 such anα exists if and only if lim

d̃−→d

P(d̃)−P(d)

d̃−d
exists.

In that case it holds

α = lim
d̃−→d

P(d̃)−P(d)

d̃−d
.

α is called thedifferential quotientor derivativeof P at d. One writesα = P′(d).
Finally, we obtain

LP(d,∆d) ≈ P′(d) for ∆d sufficiently small.

12 1 BASICS OF ERROR ANALYSIS

-

6

d

a

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

d d̃

P(d)

P(d̃)

Figure 1: Geometric interpretation of the derivative

1.2 Conditioning of Problems 13

α has a nice geometric interpretation (see Figure. 1). While the difference quotient
represents the slope of the secant,α represents the slope of the tangent of the graph of
P at d.

In the multi-dimensional case, the difference quotient does no longer exist. In order
to obtain a quantity generalising the notion of the derivative from the one-dimensional
case, one argues slighly differently. As a starting point, as ansatz functions forh
(affine) linear functions are chosen,

h(d̃) = A(d̃−d)+b,

whereb∈ R
m andA anm×n-matrix is. It holds

‖h(d̃)−h(d)‖ = ‖A(d̃−d)+b−b‖ ≤ ‖A‖‖d̃−d‖,

such thatLh(d,∆d) = ‖A‖.
We need to findA, b. From (1.3) it follows as beforeb = P(d). Unfortunately, we

cannot use (1.5) in order to determineA. Therefore, one takes the property (1.3) as
a definition: P is calleddifferentiable(sometimesFrèchet differentiable) in d ∈ D if
there exist∆ > 0 andA∈ R

m×n such that, for alld̃ with ‖d̃−d‖ ≤ ∆d it holds

P(d̃) = P(d)+A(d̃−d)+o(d̃−d).

A is called thederivativeof P atd, and one writesA = P′(d).
This definition does not provide any practical method for actually computing the

derivative. However, the following considerations may help in practical computations.
Let in the followingP be differentiable atd andA = P′(d).

1. Letz∈ R
n be fixed andd̃ = d+ tz. Then it holds

P(d+ tz)−P(d) = tAz+o(tz) für t −→ 0
1
t
(P(d+ tz)−P(d)) = Az+o(z) für t −→ 0

Az= lim
t−→0

1
t
(P(d+ tz)−P(d)).

This relation holds true ifP is differentiable atd. One may ask the opposite ques-
tion: If the limit exists for allz∈ R

n, is P then differentiable at this point? The
answer is no. Therefore, one introduces a new definition. If this limit exists for
all z∈ R

n and has the representationAz, thenP is calledGâteaux differentiable
at d, andA is theGâteaux derivative.

2. Let us simplify this limit further. Let, in particular,z = ej be the j-th unit
vector. ThenAz= Aej is the j-th column ofA. Let P = (P1, . . . ,Pm)T and
d = (d1, . . . ,dn)

T . Then

1
t
(Pi(d+ tz)−Pi(d)) =

1
t
(Pi(d1, . . . ,d j + t, . . . ,dn)−Pi(d1, . . . ,d j , . . . ,dn)).

14 1 BASICS OF ERROR ANALYSIS

Hence,ai j is the derivative of the (scalar) functionPi with respect tod j , where all
other variables are considered to be parameters.ai j is called thepartial deriva-

tive ai j := ∂Pi
∂d j

. A is called theJacobi matrixor simplyJacobian.

The derivation yields

P differentiable=⇒ P Gâteaux differentiable=⇒ Jacobi matrix exists.

The corresponding reverse implications are not true. However, for practical purposes,
the Jacobian can easily be computed and used in estimations.

Example 1.4(Wilkinson). The problem consists of determining the roots of the poly-
nomial

p(x) = (x−1)(x−2) . . .(x−20) = x20−210x19+−·· ·+20!.

Obviously, the root are 1,2, . . . ,20. All coefficients of this polynomial are integers
such that they can be represented exactly (i.e. without rounding errors) on a computer.
But let us assume that we made a tiny error in the coefficient infront of x19. The
coefficient becomes 210+ ε. We assume that this coefficient is wrong in the least
significant bit in a 32-bits representation such thatε =−2−23 ≈−1.2×10−7 (relative
error≈ 0.5×10−9). The roots of the perturbed polynomial are

x̃1 = 1.000000000,

x̃4 = 4.000000000,

x̃10,11 = 10.095266145±0.643500904i,

x̃16,17 = 16.730737466±2.812624894i,

x̃20 = 20.846908101.

These error are quite large compared to the errors in the data. Even some of the simple
and well separated roots have become complex conjugate pairs.

Let us determine the conditioning of our problem. Let ˜xi be thei-th root of the
perturbed polynomial ˜p(x). Define p̃ = p+ εg, g(x) = 210x19. Then the perturbed
roots can be considered as functions of the perturbationε, x̃i = x̃i(ε) while x̃i(0) = i is
the unperturbed root.

The absolute condition number of our problem can be estimated by the size of the
derivativedx̃i(0)/dε. This derivative can be determined as follows. By definition, x̃i

fulfills the identity p̃(x̃i(ε)) ≡ 0 for all ε. Differentiation with respect toε yields

p′(x̃i(ε))
dx̃i(ε)

dε
+ εg′(x̃i(ε))

dx̃i(ε)

dε
+g(x̃i(ε)).

For ε = 0 we obtain
dx̃i(0)

dε
= − g(x̃i(0))

p′(x̃i(0))
.

1.3 Floating Point Numbers 15

Inserting the data of our problem, we obtain, for example,

Lx̃20 ≈ 0.9×1010

Lx̃16 ≈ 3.7×1014.

These are really large condition numbers! In conclusion, the problem of determining
the roots of a polynomial can be severly ill-conditioned. Note that the present problem
is nevertheless well-posed.

Example 1.5.A very simple example of an ill-posed problem is the evaluation of the
following function f close to zero.

f (x) =

{

1/x, x 6= 0

0, x = 0
.

Since f is not continuous in 0, this problem cannot be well-posed. Even if we take as
the domain of definition the setD = R\{0} (on which f is continuous), we obtain

∣
∣
∣
∣

1
x
− 1

y

∣
∣
∣
∣
=

1
|xy| |x−y| ≥ L|x−y|

for L ≤ 1/|xy|. Since this value is unbounded, the problem is ill-posed forx,y→ 0.

Example 1.6. Very often the ill-posedness of a problem is not that obvious. Consider
the simple linear optimization problem

f (x1,x2) := x1 −→ max!

with respect to the constraints

x1 ≥ 0, x2 ≥ 0

x1 ≤ 1, x2 ≤ 1

εx1 +x2 = 0.

The data of the problem shall beε. The solutions are

ε 6= 0: x1 = x2 = 0 and f (x1,x2) = 0.

ε = 0: x2 = 0, x1 = 1 and f (x1,x2) = 1.

1.3 Floating Point Numbers

Numerical problems will be solved by usingfloating point arithmetic. Depending on
the programming language, the corresponding data is calledREAL,DOUBLE PRECISION,
real,float,double or similar. In order to be able to investigate the propertiesof a

16 1 BASICS OF ERROR ANALYSIS

numerical algorithm with respect to rounding errors we willneed a sufficiently precise
(meaning even: slightly simplified) model of the corresponding machine arithmetic.

Let β , t,E1,E2 be positive integers withβ ≥ 2. The set of floating point numbers
consists of all real numbers having the representation

x = ±0.m1 . . .mt ·β e

where:
β - base of the number system,e∈ [−E1,E2],
m - mantissa,mi ∈ {0, . . . ,β −1},

where eitherm1 > 0 orm1 = · · · = mt = 0, e= −E1.

Example 1.7. ANSI/IEEE-Standard 754-1985; IEC-60559:1989; revised 2008

β = 2, t = 24, (single precision)

t = 53, (double precision)

E1 = 127, E2 = 126, (single precision)

E1 = 1023, E2 = 1022 (double precision)

Besides these precisions, an additional representation “extended” is required.
For this one, it is only required that it has a higher accuracythan double preci-
sion.1 Example realisations are:

Intel architecture t = 64 15 Bit Exponent
HP-PA RISC t = 112 15 Bit Exponenet

IBM 360 and similar This floating point system is ancient but may serve as another
example.

β = 16, t = 6, (single precision)

t = 14, (double precision)

E1 = 64, E2 = 63

With increasing length of the mantissa the accuracy of the computations is increas-
ing, but the computational expense is also increasing, for example memory consump-
tion and execution time for the arithmetic operations.2 The length of the mantissa
should be a well-chosen compromise between accuracy requirements and computa-
tional costs. Floating point arithmetic is computation with a fixed number of digits
that is usually much larger than required by the accuracy constraints. On the other
hand, the often huge number of floating point operations may lead to a large accu-
mulated error. Gehard Wanner noted that someone who is carrying out millions of
operation will make millions of errors.

1In fact, there is also an extended single precision required. However, the role of extended single
precision is usually played by double precision.

2The execution time is heavily harware dependent. There may be a penalty or not.

1.3 Floating Point Numbers 17

The assessment of the accuracy of numbers which are the result of computations on
a machine requires an in-depth knowledge of the properties of the underlying machine
arithmetic and a careful error analysis of the algorithm.

Let the set of floating point numbers be denoted byC. Moreover, let MAX be the
largest representable floating point number and MIN be the smallest positive repre-
sentable floating point number. Then we have the following properties:

1. The closed interval [−MIN,MIN] contains only three floating point numbers.

2. For representing real numbers we need a mapping (rounding) rd :R −→ C. This
mapping has the properties:

|x| > MAX =⇒ rd(x) is not defined (overflow).

|x| < MIN =⇒ rd(x) = 0 (underflow).

3. When representing real numbers|x| < MAX it holds

rd(x) = x(1+ ε(x))

with

ε(x) = 0, if x = 0

ε(x) = −1, if 0 < |x| < MIN

ε(x) ≤ ν, if MIN < |x| < MAX

and therelative rounding error level

ν =

{
1
2β 1−t , (rounding to next floating point number)

β 1−t , (rounding by chopping or similar)

In the examples given above it holds withν = β 1−t :

IEEE: ν =

2−23 ≈ 1.2 ·10−7

2−52 ≈ 1.1 ·10−16

2−63 ≈ 1.1 ·10−19

2−111 ≈ 3.8 ·10−34

IBM: ν =

{

16−5 ≈ 9.5 ·10−7

16−13 ≈ 2.2 ·10−16

4. Floating point arithmetic. Let fl denote the result of a floating point operation.
Then we assume the following property to hold:

Postulate: fl(xopy) = rd(xopy)

18 1 BASICS OF ERROR ANALYSIS

with op= +,−,∗,/. In this contextν is called themachine accuracy(“machine
epsilon”). Then it holds for all operationsx,y ∈ C andxopy = 0 or |xopy| ∈
[MIN,MAX]:

fl(xopy) = (xopy)(1+ ε) mit |ε| ≤ ν.

One says that the operations have maximal accuracy.

Let x′ = x(1+ ε), y′ = y(1+ ε). Then this is equivalent to

fl(x±y) = x′±y′

fl(x∗y) = x′ ∗y = x∗y′

fl(x/y) = x′/y,

i.e., the result of the floating point operation is the exact result of the same oper-
ation in real numbers with slightly perturbed operands.

5. Problems of floating point arithmetic.

Overflow. If the absolute value of a result of the operation is larger than MAX, it
cannot be represented as a floating point number. This arithmetic exception
is calledoverflow. Depending on the hardware or user requirements either
the computation will be cancelled or the result will become afictious value
of ± INF.

Underflow. If the absolute value of a result of the operation is smaller than
MIN, the result is often (but not always!) rounded to zero. The relative
error of the result becomes 100% in this case!

Cancellation. The addition of two numbers having almost the same absolute
value but opposite signs leads to a decrease of the valid number of digits.
The result will have a large relative error.

Arithmetic rules. Even in case that there is neither overflow nor underflow, the
usual arithmetic rules do no longer hold. By our postulate, both addition
and multiplication are commutative. However, these operations are neither
associative nor distributive. This lack of properties becomes especially
important when a compiler tries to reorder expressions in order to optimize
for speed.3

Remark1.5. The implementation of the already cited ANSI/IEEE standardfor floating
point arithmetic is nowadays almost a must for hardware vendors. Therefore, we will
consider it here in more detail. The main goals of the standardizing committee can be
summarized as follows:

1. A consistent representation of floating point numbers on all machines;

3A good compiler should warn you about such possibilities.

1.3 Floating Point Numbers 19

2. correctly rounded arithmetic;

3. consistent and reasonable handling of exceptional situations (for example over-
flow, underflow, division by zero).

The standard requires the presence of three number formats,single, double, and
extended. The first two formats are defined in details while vendor has some free-
dom on how to implement the third one. The only requirement isthatextended is
more accurate thandouble.

The single representation uses 32 bits. The number base is 2. In contrast to
our model given above, nonzero floating point numbers have a mantissa of the kind
1.m2 Since the first digit is alway 1, there is no need to save it. This omission is
called “hidden bit” representation. The exponent contains8 bits. The exponent does
not carry a sign by adding 127 to its binary presentation. Theexponents 0 and 255
have a special meaning:

0: As we have seen before, the normalized representation of floating point numbers
leads to a “hole” in the representable numbers around 0. In order to try to avoid
this hole, close to 0 (which corresponds to the smallest exponent 0) unnormal-
ized number representations are allowed. These so-called subnormal numbers
have a smaller accuracy than the normalized numbers, but theinterval between
−MIN and MIN is filled with equidistant numbers. This way, one has also a
unique representation of the real number 0 as well as a uniqueinterpretation of
the bit pattern consisting of all 0.4

255: The highest possible exponent is reserved for the representation of the “numbers”
+∞ and−∞. The mantissa will be 0 in this case. If the mantissa is not equal to 0,
the value is interpreted as “Not a Number” (NaN). This value is necessary for a
consistent behavior in exceptional situations and arithmetic operations including
+∞ and−∞.

Summarizing we obtain the interpretation for all possible 32-bits patterns as given in
Figure 2. The double representation has a completely analogous structure where 64
bits are used. Out of these 64 bits, 11 bits are used for the exponent and 52 bits for the
mantissa. The exponent offset is 1023. Details are providedin Figure 3.

Let us investigate the arithmetic operations now. First, consider only the normal-
ized and subnormal numbers. There are four rounding modes defined. Let, forx∈ R,
x− denote the largest floating point number being≤ x andx+ denote the smallest float-
ing point number with≥ x.

• Rounding towards−∞: rd(x) = x−;

• Rounding towards+∞: rd(x) = x+;

4The hidden bit representation would not allow for a representation of 0.

20 1 BASICS OF ERROR ANALYSIS

±|a1 . . .a8|b1 . . .b23

Exponenta1 . . .a8 numerical value

(00000000)2 = (0)10 ±(0.b1 . . .b23)2×2−126

(00000001)2 = (1)10 ±(1.b1 . . .b23)2×2−126

(00000010)2 = (2)10 ±(1.b1 . . .b23)2×2−125

...
...

(11111110)2 = (254)10 ±(1.b1 . . .b23)2×2127

(11111111)2 = (255)10

{

±∞, if b1 = · · · = b23 = 0

NaN, else

Figure 2: IEEE: single precision

±|a1 . . .a11|b1 . . .b52

Exponenta1 . . .a11 numerical value

(00000000000)2 = (0)10 ±(0.b1 . . .b52)2×2−1022

(00000000001)2 = (1)10 ±(1.b1 . . .b52)2×2−1022

(00000000010)2 = (2)10 ±(1.b1 . . .b52)2×2−1021

...
...

(11111111110)2 = (2046)10 ±(1.b1 . . .b52)2×21023

(11111111111)2 = (2047)10

{

±∞, if b1 = · · · = b52 = 0

NaN, else

Figure 3: IEEE: double precision

• Truncation (rounding towards zero): rd(x) = x±, such that either 0≤ rd(x) ≤ x
or x≤ rd(x) ≤ 0;

• Rounding to the nearest floating point number. In case of a tie, the “even digit”
rule applies.

The rounding mode to be used in a certain computation can be set by the software.
Most often, rounding to nearest is the standard mode. It is, however, useful to have a
look at the documentation of hardware and compiler. With respect to our “rounding
error postulate” the standard requires explicitely that itis fulfilled.

Besides the normalized and subnormal numbers the standard contains special num-
bers INF and NaN. The result of operations including these operands as well as the
behavior in exceptional situations is well defined:

1.4 Rounding Error Propagation 21

Operations including ±∞: The results shall be computed according to the usual math-
ematical rules. In case of indefinite expressions (e.g.,∞−∞) the result is NaN.

Operations including NaN: The result is always NaN.

Invalid operation: The result is always NaN (e.g., taking the square root of a negative
number).

Division by zero: The result is±∞, where the sign is determined by the sign of the
operands. Since zero has a sign, it holds+0 = −0, but 1/(+0) 6= 1/(−0) in
floating point arithmetic!

Overflow: The result will be rounded according to the chosen rounding mode. Ob-
serve that INF is a floating point number. In case of rounding towards zero, the
result of an operation with normalized numbers will never be±INF!

Underflow: The result will be zero or a subnormalized number, dependingon pro-
grammable flags.

All exceptional situations include the setting of a corresponding flag. Moreover, the
programmer (or the compiler has done it for you) can choose how to react. One pos-
sibility is to interrrupt the program execution and let the program take action. Most
often, however, standard reactions are taken: In case of overflow, the program will be
aborted while with underflow the program proceeds silently with subnormal numbers.
Read carefully your computer’s documentation!

Another problem in practical computations is that, even if promised, the hardware
is not fully standard complient. This is especially true forhighly tuned arithmetic
units which sometimes do not have a correct handling of INF and NaN. A more in-
teresting issue is connected with the realization of floating point arithmetic on x86
processors. Most FPU operations are carried out in extendedprecision in hardware
registers. Rounding to standard 32- or 64- bit format happens only when the number is
stored in memory. This behavior is not standard complient. However, the result of the
operations is usually more accurate than the result according to the standard would be.
Consequently, the result of a computation may depend on the compiler as well as on
the optimization level. For most good numerical algorithms, this is more a plus than
a deficiency. There had, however, been some discussion with respect to this behavior
in the Java community. One of the aims of the Java developmentwas to make the pro-
grams completely predictable and machine independent. Forfloating point arithmetic,
this can only be guaranteed if it follows the standard strictly. On x86 architecture this
can be achieved by saving each individual result to memory and loading it back for the
next operation. This is a huge penalty for the efficiency of a code!

1.4 Rounding Error Propagation

Rounding error propagation is a property that is generated by the algorithm for solving
a problem in contrast to input and data errors. The behavior of an algorithm with

22 1 BASICS OF ERROR ANALYSIS

respect to rounding errors is an essential characteristic of a numerical algorithm. Other
important properties are the ressources needed by an algorithm, mainly computation
time and memory ressources.

In the following considerations, we will always assume thatthe algorithm does
not lead to underflow or overflow.

For the purposes of these lecture notes, analgorithmis afinitesequenceP1,P2, . . . ,PN

of ”elementary“ steps in order to solve a given problemP. The realization of the al-
gorithm on a concrete computer is theimplementation. The latter distinguishes itself
essentially from the (theoretic, mathematically exact) algorithm. While the latter is
usually given in the field of real numbers, the implementation relies on machine arith-
metic. These two notions are different from their usage in Computer Science which is
often identified with a program (say, a Turing machine). A numerical algorithm may
be given in many different forms. The most concise one is, of course, a program in
some programming language. So the source code corresponds to an algorithm. After
compiling the source code into an executable we have the implementation available. It
is the latter which defines the real process on a given hardware.

More abstract, an algorithmP1, . . . ,PN solves a problema = P(d) if and only if
P = PN ◦ · · · ◦P1 for a well defined set of datad.

In the following example we will carry out the rounding erroranalysis for an ele-
mentary but important basic algorithm in numerical linear algebra.

Example 1.8.Problem: Compute the sumz=
n

∑
i=0

xi of n given real numbersx1, . . . ,xn.

A simple algorithm may look as follows (see Figure 4). The computational expense
is n additions.

z := 0
for i := 1, . . . ,n: z := z+xi

Figure 4: Algorithm for the summation ofn real numbers

The real process on a computer looks like that:

z0 := 0,

zi := fl(zi−1+xi), i = 1, . . . ,n.

Hence it holds

zi = (zi−1+xi)(1+ εi), |εi| ≤ ν,

such that

z1 = x1(1+ ε1),

z2 = (z1+x2)(1+ ε2) = x1(1+ ε1)(1+ ε2)+x2(1+ ε2),

1.4 Rounding Error Propagation 23

and finally

zj =
j

∑
i=1

xi

j

∏
k=i

(1+ εk).

The product can be estimated as follows,

m

∏
k=1

(1+ εk) = 1+
m

∑
k=1

εk + ∑
1≤k<l≤m

εkεl + ∑
1≤ j<k<l≤m

ε jεkεl + · · ·+ ε1ε2 · · ·εm.

The number of terms in the individual sums can be evaluated bycombinatorial consid-
erations (combinations fromm elements). This yields

|
m

∑
k=1

εk + · · ·+ ε1 · · ·εm| ≤
mν
1

+
mν(m−1)ν

1 ·2 + · · ·+ mν(m−1)ν · · ·1ν
1 ·2· · · ·m

≤ mν(1+q+q2+ . . .qm),

whereq = mν. If q < 1 holds (and that should be normally the case!), so

|
m

∑
k=1

εk + · · ·+ ε1 · · ·εm| ≤
mν

1−q
. (1.6)

In practice it holds evenmν ≪ 1 such that, in a very good approximation, it holds
asymptotically

mν
1−q

.
= mν.

By usingz0 = 0 andε1 = 0 we obtain

zn =
n

∑
i=1

xi(1+ ε(n)
i) (1.7)

with

ε(n)
i =

n

∏
k=i

(1+ εk)−1

such that

|ε(n)
i |≤̇min{n− i +1,n−1}ν ≤ (n−1)ν.

Let z∗ denote the exact sum,z∗ =
n

∑
i=1

xi , then

|z∗−z|≤̇
{

n

∑
i=1

min{n− i +1,n−1}|xi|
}

ν ≤
{

(n−1)
n

∑
i=1

|xi|
}

ν. (1.8)

24 1 BASICS OF ERROR ANALYSIS

This error estimation is a so-calleda-priori bound since it depends on the given data
only. Therefore, this bound describes the worst-case scenario. This bound is very
often too crude but it can be attained. In practice, one can often compute another value
which is a more realistic estimation of the error (a so-called a-posterioriestimation
because it depends on the intermediate results of the computation). In our example,
one could proceed as follows: It holds

zi = zi−1+xi +(zi−1+xi)εi

= zi−1+xi +
ziεi

1+ εi
.

For δi = εi
1+εi

it holds|δi | ≤ ν
1−ν

.
= ν such that

z= zn−z0 =
n

∑
i=1

(zi −zi−1) =
n

∑
i=1

(xi +ziδi) = z∗ +
n

∑
i=1

ziδi ,

hence

|z−z∗|≤̇ν
n

∑
i=1

|zi |.

Remark1.6. (i) The left bound in (1.8) attains its minimum if the valuesxi are
added in monotonic increasing by absolute value order.

(ii) The relative rounding error|z∗−z|/|z∗| can become extremely large if numbers
with alternating signs are added (cancellation).

(iii) The relative rounding error is small if numbers with identical sign are added:
|z∗−z|/|z∗|≤̇(n−1)ν.

The second remark leads to the question if the (bad?) behavior of our summation
algorithm is caused by the algorithm or if there are other reasons. Previously we have
seen that every floating point numberx represents not only itself but all real numbers
x̃ such thatx = rd(x̃).

Assumption: x∈ C represents all ˜x∈ R with x̃ = x(1+θ), |θ | ≤ ν.
Consequently, the set{x1, . . . ,xn} represents alln-tuples{x̃1, . . . , x̃n} with x̃i =

xi(1+θi), |θi| ≤ ν. Let the sum of ˜xi be z̃:

z̃=
n

∑
i=1

x̃i .

We interpret the estimate (1.8) in two different ways.

1st interpretation:

z̃=
n

∑
i=1

xi(1+θi) with |θi| ≤ ν,

z=
n

∑
i=1

xi(1+ ε(n)
i) with |ε(n)

i |≤̇(n−1)ν.

1.4 Rounding Error Propagation 25

The sumz computed according to the given algorithm is the exact sum ofper-

turbed input dataxi(1+ ε(n)
i) where|ε(n)

i |≤̇(n− 1)ν holds. The perturbations

produced by the rounding errorsε(n)
i increase the uncertainty contained in the

input data at most by a factor ofn−1. (”z is the correct solution of a wrong
problem.“)

2nd interpretation:

|z̃−z∗| = |
n

∑
i=1

(x̃i −xi)| = |
n

∑
i=1

xiθi | ≤ ν
n

∑
i=1

|xi |,

|z−z∗|≤̇(n−1)ν
n

∑
i=1

|xi |.

The rounding error ofz produced by the given algorithm is at most the(n−1)-

fold of the unavoidable error levelν
n

∑
i=1

|xi | which is caused by the uncertainty

of the input data.

Both interpretations lead to the conclusion that the uncertainty contained in the input
data{x1, . . . ,xn} is only increased quantitatively (namely, by the factorF = n− 1).
Hence, the algorithm is not that bad.

The difference between these two interpretations consistsof the following reason-
ings:

1. Construct perturbationsε(n)
i of the input data such that the computed result is

the exact solution of the problem with these perturbed data.Then, compare
the perturbations with the error (uncertainty) of the inputdata. (backward error
analysis)

2. Estimate the unavoidable error as realistic as possible.Moreover, estimate the
rounding error caused by the algorithm. Then, compare thesetwo errors. (for-
ward error analysis)

Definition. (i) An algorithm is callednumerically backward stablefor P (on D) if
for all d∈D a perturbationδd exists such thata= P(d+δd) and‖δd‖≤Fwν‖d‖
holds for the computed valuea.

(ii) For d ∈ D is

∆aopt(d,ν) := sup{‖P(d+δd)−P(d)‖|d+δd ∈ D,‖δd‖ ≤ ν‖d‖}
theunavoidable error level.

(iii) An algorithm isnumerically stablefor P (on D) if the rounding errorδa fulfills

‖δa‖ ≤ Fs∆aopt(d,ν)

for all d ∈ D.

26 1 BASICS OF ERROR ANALYSIS

If P is well conditioned, then it holds for numerically backwardstable algorithms
that

‖a− ã‖ ≤ L‖d− d̃‖ = L‖δd‖ ≤ LFwν‖d‖.

Hence, the algorithm is even numerically stable since∆aopt(d,ν)≈ Lν‖d‖ for realistic
constantsL.

Numerical backward stability is the best property of a numerical algorithm with re-
spect to rounding errors since the information contained inthe input data is transferred
most reliably to the computational results.

Numerical stability is the minimal requirement for a usablenumerical algorithm.
If a numerical algorithm is not numerically stable, the rounding errors can become
arbitrarily large.

Remark1.7. (i) F = n− 1 is not the best possible constant for summation algo-
rithms.

(ii) There exists methods for increasing the accuracy of thesum without using longer
mantissas (Kahan-Babuška summation).

(iii) Never implement an algorithm withouta-posteriorierror estimations!

Example 1.9(Fox, Mayers). Compute the integral

In :=
∫ 1

0
ex−1xndx.

Obviously, the following properties are true:

a) 0≤ ex−1xn ≤ 1, x∈ [0,1]

b) ex−1xn−1 ≥ ex−1xn, x∈ [0,1]

c) 0≤ In ≤ In−1 ≤ I0 ≤ 1

d) lim
n→∞

ex−1xn =

{

0, if 0 ≤ x < 1

1, if x = 1

e) lim
n→∞

In = 0

f) I0 = 1−e−1

g) In = 1−nIn−1

The first step in the analysis is the determination of which values are considered to be
data of the problem such that they must be considered perturbed. Sincen is a natural
number, it is given exactly. Hence, rounding errors are onlypossible when representing
e on the computer. Therefore, the conditioning ofIn with respect to perturbations ofe
(!) must be investigated. By differentiation with respect to ewe obtain for the absolute

1.4 Rounding Error Propagation 27

condition numberL

L ≈
∣
∣
∣
∣

∂
∂e

In

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ 1

0

∂
∂e

(
ex−1xn)dx

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ 1

0
(x−1)ex−2xndx

∣
∣
∣
∣
.

For the relative condition numberK it holds

K ≈ L
|e|
|In|

=

∫ 1
0 (1−x)ex−2xndx
∫ 1

0 ex−1xndx
e

=

∫ 1
0 (1−x)ex−2xndx

e
∫ 1

0 ex−2xndx
e

≤ 1
e

e

= 1.

The problem is very well conditioned.
Let us remark that an estimate of the condition number can be obtained without the

use of differential calculus. One possibility is as follows: Let 0≤ δ < e. Then
∣
∣
∣
∣

∫ 1

0
(e+δ)x−1xndx−

∫ 1

0
ex−1xndx

∣
∣
∣
∣
≤
∫ 1

0

∣
∣(e+δ)x−1−ex−1

∣
∣xndx

≤
∫ 1

0

∣
∣(e+δ)x−1−ex−1

∣
∣dx

The expression inside of the vertical bars does not change sign. Hence,
∣
∣
∣
∣

∫ 1

0
(e+δ)x−1xndx−

∫ 1

0
ex−1xndx

∣
∣
∣
∣

≤±
{

1
ln(e+δ)

(

1− 1
e+δ

)

−
(

1− 1
e

)}

.

Since
1

ln(e+δ)
= 1− δ

e
+O(δ 2),

it holds

∫ 1

0

[
(e+δ)x−1−ex−1]dx=

e
(

1− δ
e +O(δ 2)

)

(e+δ −1)− (e−1)(e+δ)

(e+δ)e

= δ
2−e

e2 +O(δ 2),

28 1 BASICS OF ERROR ANALYSIS

souch thatL ≈ e−2
e2 . On the other hand,

In ≥ e−1
∫ 1

0
xndx=

1
e(n+1)

.

The relative condition number becomes

K ≈ e−2
e2 e(n+1)e= (n+1)(e−2).

Since the integral estimates are not very sharp, this bound is larger than that obtained
by differential calculus. Nevertheless, even here we can draw the conclusion that the
problem is well conditioned.

An obvious algorithm motivated by the properties (f) and (g)is the one provided
in Figure 5.

I := 1−1/e
for i = 1, . . . ,n: I := 1− iI

Figure 5: Algorithm for the evaluation of an integral

When implementing this algorithm on a computer with Intel processor (IEEE Dou-
ble Precision) one obtains the results of Figure 6.

It is seen that during the computation with an accuracy of 16 decimal digits even
the sign is not correct after a few steps. Later, the computedresults are exploding. The
rounding error analysis will provide an explanation for this behavior.

Let Ĩn be the computed values which are subject to rounding errors.Let ε0 be the
error of Ĩ0. The realization of the algorithm on the computer leads to the following
process:

Ĩ0 = I0(1+ ε0),

Ĩn = fl(1−nĨn−1)

= fl(1−nĨn−1(1+ ε1,n))

= (1−nĨn−1(1+ ε1,n))(1+ ε2,n).

This recursion can be solved explicitly. The explicit representation is rather clumsy:

Ĩn =
n

∑
i=1

(−1)n−i(1+ ε2,i)
n

∏
j=i+1

j(1+ ε1, j)(1+ ε2, j)+(−1)n
n

∏
j=1

j(1+ ε1, j)(1+ ε2, j)Ĩ0.

A backward error analysis is not possible in the present casesince the error does not
have a representation like a factor in front ofI0 (ande, respectively). Therefore, we
restrict ourselves to a forward error analysis.

1.4 Rounding Error Propagation 29

n In
0 6.321206e-01
1 3.678794e-01
2 2.642411e-01
3 2.072766e-01
4 1.708934e-01
7 1.455329e-01
6 1.268024e-01
7 1.123835e-01
8 1.009320e-01
9 9.161229e-02

10 8.387707e-02
11 7.735223e-02
12 7.177325e-02
13 6.694778e-02
14 6.273108e-02
15 5.903379e-02
16 5.545930e-02
17 5.719187e-02
18 -2.945367e-02
19 1.559620e+00
20 -3.019239e+01
21 6.350403e+02
22 -1.396989e+04
23 3.213084e+05
24 -7.711400e+06

Figure 6: Results of the algorithm from Figure 5

A first impression of what is going on can be obtained by assumingε1, j = ε2, j = 0
for j = 1, . . . ,n . In that case,

Ĩn− In = (−1)nn!ε0.

Consequently, a (possibly small) initial error will be amplified byn!. Additionally, one
can observe the alternating sign of the computed values if|n!ε0| > 1. The latter holds
true for rather smalln. An estimation of the complete expression does not provide any

30 1 BASICS OF ERROR ANALYSIS

new insight. We provide it for the sake of completeness.

Ĩn− In =
n

∑
i=1

(−1)n−i

{

(1+ ε2,i)
n

∏
j=i+1

j(1+ ε1, j)(1+ ε2, j)−1 ·
n

∏
j=i+1

j

}

+

(−1)n

{
n

∏
j=1

j(1+ ε1, j)(1+ ε2, j)Ĩ0−
n

∏
j=1

jI0

}

=
n

∑
i=1

(−1)n−i
n

∏
j=i+1

j

{

(1+ ε2,i)
n

∏
j=i+1

(1+ ε1, j)(1+ ε2, j)−1

}

+

(−1)nn!

{

(1+ ε0)
n

∏
j=1

(1+ ε1, j)(1+ ε2, j)−1

}

I0

=
n

∑
i=1

(−1)n−i

(
n

∏
j=i+1

j

)

ε̃(n)
i +(−1)nn!ε̃(n)

0 I0

where, by (1.6),

|ε̃(n)
i |≤̇[2(n− i)+1]ν.

This yields the estimate

|Ĩn− In|≤̇
n

∑
i=1

(
n

∏
j=i+1

j

)

[2(n− i)+1]ν +n!(2n+1)νI0

≤ n!(n+1)2I0ν.

An obvious question is now if there is no well behaved algorithm for the computa-
tion of the given integral. Remember, that this integral is very well conditioned. In
principle, this is possible by numerical intergration. In the present example, there is a
much more elegant solution. Since the ”forward recursion“In = 1−nIn−1 is extremely
unstable, we expect that the ”backward recursion“ is very stable. Since limn→∞ In = 0,
the algorithm of Figure 7 can be used for approximatingIn.

Choose a largenmax

I := 0
for i = nmax, . . . ,n: I := (1− I)/i

Figure 7: Algorithm for the computation of an integral

The implementation of this algorithm on a computer with Intel architecture shows
a much better behavior. The value forn = 20 is exact (compare Figure 8).

1.4 Rounding Error Propagation 31

n In
30 0.000000e+00
29 3.333333e-02
28 3.333333e-02
27 3.452381e-02
26 3.575838e-02
25 3.708622e-02
24 3.851655e-02
23 4.006181e-02
22 4.173644e-02
21 4.355743e-02
20 4.554488e-02

Figure 8: Results of the algorithm from Figure 7

