Scientific Computing Il

Michael Hanke
School for Computer Science and Communication

November 5, 2010

Contents

1 Basics of Error Analysis
1.1 Normsof Vectorsand Matrices
1.2 ConditioningofProblems
1.3 Floating PointNumbers

1.4 Rounding Error Propagation

This paper gives a short introduction into error analysg@mnstruction principles
for numerical algorithms. Besides very general considamatexamples from numer-
ical linear algebra are treated in more detail.

This manuscript is a fast and dirty translation of the firgfmier of German lecture
notes used at Humboldt University of Berlin.

The basic question to be discussed is the difference betihieery (formulation of
an algorithm) and practice (implementation on a computarhtimerical algorithms.
Numerical algorithms are usually formulated using the figldeal numbers. On a
computer, we have only a small finite subset of these numbaishble, namely, float-
ing point numbers. Given a single arithmetic operationehsroften only a small
difference between the exact result in real numbers and #ehime result obtained
after rounding. So, does it matter? Unfortunately, the @amdwyes. Therefore we
must have a closer look at the behavior of an algorithm wispeet to rounding errors
(“stability”). Note that there is no problem with respecitteger arithmetic since it is
always exact on a computer. Rounding error analysis is aayproblem of numerical
analysis.

Example 0.1. Consider the following identity in real numbers:

1 c— va+b+./a c
Jatb-va b '
Seia=1000,b = 0.001,c = 62500. Evaluating both expressions on a handheld cal-
culator with a precision of 8 decimal digits provides us wit@ for the left expression
while the right one yields 74568. Which of these results is “more accurate”?
Problem: When implementing mathematically equivalent formula int&rpreci-
sion arithmetic the results may be subject to large errors.

Example 0.2. The following expression shall be evaluated:
33375-b%+a?- (11-a%-b>— b8 —121-b*—2) +55-b8+a/(2-b).

Let the data be = 776170, b = 330960. On a computer IBM 4381 (agreed, this is
an ancient machine) using the operating system VM and thgr@naming system VS
FORTRAN the following results have been calculated (roander decimals)

single precision (6 Hexadecimal digits) 1.172604
double precision (14 Hexadecimal digits) 1.172604
extended precision (28 Hexadecimal digits) 1.172604

The exact results is

54767
66192 —0.827396059946821 ..

Problem:How can one decide if a result is reliable?
As a simple exercise you can implement this problem on a ceanpfiyour choice
using a programming environment of your choice. What is #éseilt you obtain?

Example 0.3.Let A= (g;){jjzl be a square matrix. We are looking o= detA. For
the determinanD, we have the explicit expression,

n
D= Zlali Adi,
i=

where A;; denotes the cofactor of the element. Let z, the number of arithmetic
operations necessary for calculatingMethen it holds

Zy=MN-1)+n+nz_3
=N(z-1+2) -1

Hence it holdsz, > n!. For a serial computer with a floating point performance of 1
Gflops this translates to running times of

n=11 n!=39961800 t ~ 0.04s
n=21 n!=51090942171709440000t ~ 1620a

Obviously, this is impossible with today’s technology. Wilbe possible sometimes
in the future?

(Bakhvalov, 1973) Consider a hypothetic parallel computih volumeV. Let
each arithmetic unit be a cube with side lengthit is reasonable to assume that one
arithmetic operation on that unit takes at a timég€ with the speed of light. Then,
the number of operations per second is boundeW &4A°. To give an example: Let
V = 1km?®, A = 10-8cm (approximately radius of an atom). Then the computinggpe
is limited by 3-10°7 operations per second. At the same time, 0@,

Problem:Mathematical formulae which are very usable in theoretrcsaerations
are completely unusable in practical computations.

The task of Numerical Analysis consists of the developmémfiicient, imple-
mentable algorithms for the solution of computational peots together with the pro-
vision of accuracy estimates. Nowadays, we expect evenustaiplementation to-
gether with reliable-posteriorierror estimations. So it requires a deep understanding
of tools and methods from both mathematics and computenceie

When numerically solving a problem a number of unavoidabieses of error are
present:

e Model errors: A process happening in reality must be deedrtiy mathemati-
cal expressions. This includes a decision on which progegre essential and
which are negligible. A mathematical model is always an agijpnation of re-
ality.

e Errors in data: Parameters of the real process are only krapgroximately,
say, up to a certain masurement accuracy.

e Errors in the numerical computation:

— Diskretisation errors: Mapping of continuous processes discrete val-
ues.

— Representation errors: The representation of numbersialygonnected
with a lost of accuracy, e.gircannot be represented exactly on a computer.

— Truncation errors: Every computation must be finished inditime. This
means that every algorithm must be finished after finitly msteps. Prob-
lems for which there does not exist a finite algorithm are Ugteckled by
constructing an infinite sequence converging towards theiso sought.
In that case, only finitely many term can be computed whichutsoto
truncating the sequence.

— Rounding erros: Arithmetic operations with real numbersaaly be done
with a finite precision on a computer.

The theoretical understanding of the problems as well aseofitmerical methods and
their implementation is crucial for a critical estimate ohgputational results.
The following bon mot is attributed to Karl Nickel:

e The (naive) beginner believes in every single digit in a cataponal result.
e The (experienced) programmer has confidence in half the auofldigits.
e The (knowing) pessimist suspects even the sign.

The aim of this notes is to provide you with tools for a rigaganvestigation of
the results of computations on a machine. | can only empédsz important this
is: A (slow) laptop is capable of carrying out more thar aéithmetic operations per
second. In consequence this means that the computer makéeoifding) errors
every second. Why can you expect that the result is “corpedfore precisely, how
can you be sure that the result has an accuracy which fuléls sequirements?

In order to be more definite we will consider the solution oékr systems of equa-
tions in more detail. On one hand, the underlying analysisadgebra is well-known.
On the other hand, methods of numerical linear algebra ame well investigated.
Nevertheless, a good deal of mathematical machinery witldoessary.

Literature: To be added!

1 Basics of Error Analysis

1.1 Norms of Vectors and Matrices

Obviously, vectors and matrices are the elementary comysrd linear systems of
equations. In order to be able to quantify the errors appgamithe computations with
them (what is a “large” error, what is a “small” error) we neetions for the distance
of vectors (and matrices) from each other. Our measure tdrdies will benorms

Definition. A mapping|| - || : R" — R is called anormin R" if it holds
1. ||X|| > O for allx € R", and||x|| = O if and only ifx = 0.
2. [lax|| = |al|[x|| forall x e R", a € R.
3. |[x+yl < |||l + ||yl for all x,y € R" (triangle inequality).
Conclusion. Let|| - || be a norm inR". Then it holds:

(i) d :R"x R" — R with d(x,y) := ||x—y]| is a metric inR" (a measure for a
distance).

(i) 1] =Myl < lIx=yll < [IX][+ [ly|| for all x,y € R".
Example 1.1. (i) LetpeR, p> 1.

IXlp = (éwp) "

n
xy):=xXy=S Xy
27

|- |lp is a norm inR".

(i) The expression

defines a so-calledcalar productin R". Obviously, it holds(x,x)¥/2 = ||X||.
Moreover, theCauchy-Schwarz inequality

|(x,y)] < [IX[2]lyll2 for all x,y € R"
holds true.

(i) [|X]|o :=_ max |xi| defines a norm iR".

=4,...,

Definition. Let A be am x n-matrix, || - [|[x @ norm inR", || - [[y @a norm inR™. The

value 1A

. Xy

|All :=sup = sup [|AX]ly
x20 IXI[x xix=1

denotes thénduced (byl| - ||x, || - |ly) matrix norm

6 1 BASICS OF ERROR ANALYSIS
Lemma 1.1. (i) Forgiven||-|x, ||-|ly is the induced matrix norr- || : R™" — R
anorm.
(i) Forallx € R"it holds: [|AX||ly < ||A]]]|X]|x-

(iii) Let additionally R be equipped with the north- ||z, and B a kx m-matrix.
Then,
IBA[< [|BI[[|All-

Proof. (i) Obviously, it holds||A|| > 0 for all A€ R™". Moreover:

|Al|=0 iff supM =
x20 |1XIx
iff Ax=0 forallx
iff A=0.

Leta € R. Then:

laAll = sup [laAX]y =[a| sup [|AX]ly = [a][|A].
[Ix[x=1 [X][x=1

Assume additionallg € R™". Then it holds,

|IA+B[l = sup [[(A+B)X|ly

[Xllx=1
< sup (|AXly +[IBX]ly)
[IXllx=1
< sup [|AX|y+ sup [[BX]y
[IXllx=1 IXIx=1
= [|Al+BI|-
(i) Obvious.
(iif) We may estimate:
BAX|z
IBA) = suplocX
x£0 |IX[|x
BA AX
_ qup BNz IAXly
Ao 1Ay [IX]]x
BA AX|
= auplBAz (o Iy

A0 [IAXIlY axzo IXIIx

1.1 Norms of Vectors and Matrices 7

Example 1.2. (i) For||-|[x = |- |ls, || - [[ly = || - [|]2 it holds
|A|1= max Z|aj| (column sum norm)
7 ’ I
(i) For |[-{[x =1l [loos |- [lv = [| - [l it hOldS
|A]|e0 = _max Z |aj | (row sum norm)
7 J 1
[y =1+l it holds

IAl2=Ama (spectral norm),

whereAmay denotes the maximal eigenvaluefA.

Remarkl.1 (i) The spectral norm is very expensive to compute. Instdaithe
spectral norm often the following expressions are used:

- 1/2
A := (a?-) (Frobenius norm)
PRy

[|Allmax := ni:r?ax |aj |

j=1,...n
For both expressions, Lemma 1.1 hold§ ifjx and|| - ||y are chosen to bg: ||».

(ii) If, forall xe R", [[AX|ly < al|x||x, then||Al| <a.
A property which is very usable in applications is given ia fbllowing definition.

Definition. Two norms|| - ||x, || - ||y in R" are callecequivalentf there exist constants
m, M > 0 such that
mi[x[x < [[Xlly < M[x][x

for all x € R".
Theorem 1.2. All norms inR" are equivalent.

Proof. We show that all norms are equivalent|tof|». Since equivalence of norms is
a transitive property, the theorem will be proved. llet| a norm and? thei-th unit
vector. Then,

n n n
X|| = < S IXIE < Xl S €] =: [[X]|M,
[IX] Hi;N H_i;\ illlefl < [Ix] i;” | =21

8 1 BASICS OF ERROR ANALYSIS

whereM = 5", ||€||. Moreover,
[IXE = (¥l < [[x=YI| < M[[X=Yl|e,

which implies that|| - || : (R",|| - ||«) — R is (Lipschitz-) continuous. On the other
hand,S; := {x € R"|||x|| = 1} is closed and bounded. Consequeritly|| reaches a

s : . . : X
minimumm> 0 onit: m< ||X|| forall X € S. If x# 0 is any vector, theﬁW

00

. Consequentlyn

[ee]

: X
e.m< || —— X|[eo < [IX]]- O
|

Remarkl.2 (i) Using the result above we can use any norm in error eséigat
Practically, one chooses a norm which is most convenieng¢o Tihe estimates
are then valid in any norm. The penalty to pay is slightly éargonstants due to
the constantm, M in the equivalence estimates.

(i) From an application point of view, norms should be chogesuch a way that
they describe exactly what we mean by large or small errossially, there are
a number of “natural” norms available which are dictated log problem (the
application).

In the following we will usually omit the indices in the deatibn of the norms
if there is no fear of ambiguity. It is convenient to use thecatted Landau symbols
Olofor describing the asymptotic behavior of complex funcsionhey will be defined
below.

Definition. Let f : D C R" — RMandg: D C R" — RX be two mappings.

(i) We write f(x) = O(g(x)) for x — %o (x € D) if

imsupl o,
x—x 9]

(i) We write f(x) = o(g(x)) for x — Xp (x € D) if

i 1l

=0.
x=% [lg(x)|

(iii) For m=k, we write f(x) = g(x) fur x — xo (x € D) if f(x) —g(x) = 0(g(x)).
(iv) Form=k= 1, we write f (x)<g(x) filr x — Xo (x € D) if f(x) <h(x) = g(x).

Because of Theorem 1.2 these notions are independent dfdieecof the norm.

1.2 Conditioning of Problems 9

1.2 Conditioning of Problems

The numerical solution of a problem consists of computirguits (solutions) from
given values (input data) according to well-defined rules.

Example 1.3. 1. Computation of the function value of a scalar functyoa f(x);
2. Solution of a linear system of equatiofis= b.

Let the input data be denoted ky, the results bya, the compuatational rules by
P, then the problem reads in short form

a=P(d).
In Example 1.3, this translates to:
l.d=x,a=y,P="f
2.d=(Ab),a=xP(d)=A""b

In general, the input data for numerical computations amwnapproximately, only.
By deciding which quantities are considered to be input dagaimplicitely decide
about which data are considered to be exactly known, andiwdéta must be consid-
ered to be subject to errors.

The accuracy of the data can be described by the absoluteekatne errors, re-
spectively,

O =X—X, ||| < Ay,
1R =X|| = &[], &x < Ex.

For scalar quantities, the relative error can be alterabtidefined byx= (1+ &)X,
|&x| < Ex.

The following observations are crucial for the understagdif accuracy estimates
and the behaviour of numerical algorithms. In general, ahé/error bounddy, Ex
are known while the errors are (obviously) unknown. As a egungencethe actual
problem a= P(d) is not distinguishable from any other problem

~

a="P(d)

where the input datd fulfill ||dy| < Aq and|eg| < Eg, respectively. All these problems
are equally valid given the information provided, that ie thput dataand the error
bounds Consequently, we must understand assbkition of the given problertine
sets

P(d) 8] < A
P(d)leal < Eq-

a

«Q{a<d7Ad) :

{
M(d7Ed) : {

a

10 1 BASICS OF ERROR ANALYSIS

In practice, this is impossible since these sets can be \@nplex. From a practical
point of view, we are interested in simple characteristiabis set. A simple measure
is the diameter of these sets because it mesures the maxiraitainty (or, error)

in the results. In order to assess the accuracyg thife"quantities)y (resp.Eq) and
diamara(d,Ag) (resp. diame (d, Eq)) must be related to each other. However, even
this task is practically too hard to do. As a replacement, uswesally tries to derive
estimates of the kind

[P(d) — P(d)]| < L(d,Aq)|d—d] (L.1)
1P — P(d)] |d—d]
Py = <R g (1.2

wherelL, K shall berealistic constants. Obviously, the expressibfd,Aq)Aq is an
overestimation of diamz;(d,Aq). The larger the constantsor K are, the larger will
be the uncertainty (error) in the result of the probleror a given error bound of the
input data. If such an estimate does not exist, then theseimdahe result may become
arbitrarily large! The latter situation makes any caldelatmeaningless.

Stop here shortly. It's a good point to contemplate abous#igng. Proceed only
when you have understod the ideas.

Definition. (i) The constantt (K) are called ambsolute (relative) condition num-
ber of P.

(i) The problemP is calledwell conditionedf L or K are not too large.

(i) If there exist estimates of the type (1.1), (1.2), tHers calledcorrectly posed
OtherwiseP is called arnill-posedproblem.

Remarkl.3 (i) If L is an absolute condition number, add# 0, P(d) # 0, then

K:= L% is a relative condition number.

(i) Correctness of the problemis equivalent to the (Lipschitz-) continuous depen-
dence of the solution from the data.

Remarkl.4. The computation of condition numbers is often a very hardlemm and
may require very deep mathematical tools. This is espgdiale for problems like
partial differential equations, optimization problems.eSometimes it is possible to
obtain an asymptotic estimate of the condition number bygudifferential calculus.

LetD C R" open,P: D — R™andd € D be given. Moreover, lehy be a bound
for the absolute error. In order to distinguish conditiomners for different problems
we will use an additional index. As an example, (1.1) will bétten like

|a—a) <Lp(d,Aq)|d—d|, [[d—d<aq deD,

with a= P(d), 8= P(d). In generalLp is very hard to compute sind@can be very
complex. Since we are essentially only interested in theroofl magnitude ot p, it

1.2 Conditioning of Problems 11

is sufficient to know approximations of it. This aim will beached by comparing
with easier accessible functiohs
Leth: D — R™be a function with

P(d)=h(d)+o(d-d) furd—d, deD. (1.3)

This is a quantification of the requirement threis a close approximation d? in a
(possibly small) neighborhood df Obviously, taking the limitt — d leads to

P(d) = h(d).
Let nowLp(d,Aq) be an absolute condition numbertof
Ih(d) —h(d)[| < Ln(d,Aq)|d—d].
Hence, it holds

1P~ P(@)] < [IP() —)|+ i)~ hic)|
o(d—d) ~
< (S rtale.0)) 1d—al.
——

—0
d—d

This means that, for sufficiently sma};, it holds
Lp(d,Aq) ~ Ln(d,Aq). (1.4)

Consider the scalar case= m= 1 first. Easy structured functions are, for example,
linear functions N 3
h(d) =a(d—d)+ .

For such a function, we have obvioudly(d,Aq) = |a|. SinceP(d) = h(d), it holds
B = P(d). We must determine in such a way that (1.3) holds. Substitution yields

P(d)

a(d—d)+P(d)+o(d—d)

P(d) —P(d) o(d—d)
— = =q ~ . 15
d—d * d—d (1:3)
Because of Iim0<£jl —d) = 0 such arx exists if and only if_lim w exists.
d—d d—d d—da d-d
In that case it holds .
d—d d-d

a is called thedifferential quotientor derivativeof P atd. One writesa = P/(d).
Finally, we obtain

Lp(d,Aq) ~ P'(d) for Aq sufficiently smalll.

12 1 BASICS OF ERROR ANALYSIS

d d d

Figure 1: Geometric interpretation of the derivative

1.2 Conditioning of Problems 13

a has a nice geometric interpretation (see Figure. 1). Whiedifference quotient
represents the slope of the secantepresents the slope of the tangent of the graph of
P atd.

In the multi-dimensional case, the difference quotiensduo®longer exist. In order
to obtain a quantity generalising the notion of the denxatrom the one-dimensional
case, one argues slighly differently. As a starting poist,aasatz functions foln
(affine) linear functions are chosen,

h(d) = A(d—d) +b,
whereb € R™ andA anm x n-matrix is. It holds
Ih(d) — h(d)|| = A —d) +b—bj| <||All||d—d]|,

such thaty(d,Aq) = [|A|l.

We need to findA, b. From (1.3) it follows as beforb = P(d). Unfortunately, we
cannot use (1.5) in order to determiAe Therefore, one takes the property (1.3) as
a definition: P is calleddifferentiable(sometimed-rechet differentiablein d € D if
there exisA > 0 andA € R™" such that, for alil with ||d — d|| < Aq it holds

P(d) = P(d) +A(d—d) +o(d—d).

Alis called thederivativeof P atd, and one writeé\ = P'(d).

This definition does not provide any practical method foually computing the
derivative. However, the following considerations mayphel practical computations.
Let in the followingP be differentiable atl andA = P'(d).

1. Letze R" be fixed andi = d +tz Then it holds
P(d+tz) —P(d) =tAz+o(tz) furt—0
%(P(d+tz) _P(d)) = Azt+0(z) firt—0

Az— tlimot}(P(d-l—tz) —P(d)).
This relation holds true i is differentiable atl. One may ask the opposite ques-
tion: If the limit exists for allz€ R", is P then differentiable at this point? The
answer is no. Therefore, one introduces a new definitiorhigflimit exists for
all ze R" and has the representatiég, thenP is calledGateaux differentiable
atd, andA is theGateaux derivative

2. Let us simplify this limit further. Let, in particulag = el be thej-th unit
vector. ThenAz= A€ is the j-th column of A. LetP = (Pl,...,Pm)T and
d=(dy,...,dy)". Then

1

%(P.(d+tz)—P.(d)) = TR, G+t o) R,)

14 1 BASICS OF ERROR ANALYSIS

Hence g is the derivative of the (scalar) functiéhwith respect tal;, where alll
other variables are considered to be paramesggyss called thepartial deriva-

tive aj := g—g'j. A'is called theJacobi matrixor simplyJacobian
The derivation yields
P differentiable —- P Gateaux differentiable—=- Jacobi matrix exists.

The corresponding reverse implications are not true. Hewdor practical purposes,
the Jacobian can easily be computed and used in estimations.

Example 1.4(Wilkinson). The problem consists of determining the roots of the poly-
nomial

p(X) = (x—1)(x—2)...(x—20) =x?°— 21019+ — .. +-20L.

Obviously, the root are,2,...,20. All coefficients of this polynomial are integers
such that they can be represented exactly (i.e. withoutiogrerrors) on a computer.
But let us assume that we made a tiny error in the coefficienorih of x!°. The
coefficient becomes 210¢e. We assume that this coefficient is wrong in the least
significant bit in a 32-bits representation such that —2-23~ —1.2 x 10~/ (relative
error~ 0.5 x 10~9). The roots of the perturbed polynomial are

X1 = 1.000000000
X4 = 4.000000000
%1011 = 10.095266145t 0.643500904
%1617 = 16.730737466: 2.812624894
Xo0 = 20.846908101

These error are quite large compared to the errors in the Ba&n some of the simple
and well separated roots have become complex conjugate pair

Let us determine the conditioning of our problem. kebé thei-th root of the
perturbed polynomiap(X). Define g'= p+ &g, g(x) = 21*°. Then the perturbed
roots can be considered as functions of the perturbati&n= X (&) while X;(0) =i is
the unperturbed root.

The absolute condition number of our problem can be estuiiatehe size of the
derivativedX;(0) /de. This derivative can be determined as follows. By definitign
fulfills the identity p(Xi(¢)) = O for all €. Differentiation with respect te yields

o/ 6) o) e/) B g,

For & = 0 we obtain

1.3 Floating Point Numbers 15

Inserting the data of our problem, we obtain, for example,
Lo ~ 0.9 x 101°
L, ~ 3.7 x 10M.

These are really large condition numbers! In conclusioa,ptoblem of determining
the roots of a polynomial can be severly ill-conditioned té\itnat the present problem
is nevertheless well-posed.

Example 1.5. A very simple example of an ill-posed problem is the evaluabf the
following function f close to zero.

=15 7o

Sincef is not continuous in 0, this problem cannot be well-posecrEfwe take as
the domain of definition the s& = R\ {0} (on whichf is continuous), we obtain

}_%__L
Xy |xy

for L <1/|xy|. Since this value is unbounded, the problem is ill-posec;pr 0.

IX—y| > L|x—Y]|

Example 1.6. Very often the ill-posedness of a problem is not that obvidensider
the simple linear optimization problem

f(x1,%2) := %3 — max!
with respect to the constraints

X1>0, x>0
1<l x<1
EX1+X2 =0.

The data of the problem shall lse The solutions are
€#0: X3 =X =0andf(xg,x2) =0.

€=0: Xp=0,x; =1andf(xq,x) = 1.

1.3 Floating Point Numbers

Numerical problems will be solved by usifigating point arithmetic Depending on
the programming language, the corresponding data is daitédl, DOUBLE PRECI SI ON,
real ,fl oat,doubl e orsimilar. In order to be able to investigate the prope«ties

16 1 BASICS OF ERROR ANALYSIS

numerical algorithm with respect to rounding errors we wikd a sufficiently precise
(meaning even: slightly simplified) model of the correspgagdnachine arithmetic.

Let B,t,E1, E> be positive integers witfs > 2. The set of floating point numbers
consists of all real numbers having the representation

X=4+0m...m- B¢

B - base of the number system¢ [—Ej, Ep],
where: m - mantissam € {0,...,3 —1},
where eithemy >0ormp=---=m =0,e= —E;.

Example 1.7. ANSI/IEEE-Standard 754-1985; IEC-60559:198 revised 2008

B =2, t=24 (single precision)
t =53 (double precision)

Ey =127, E> =126 (single precision)

E; =1023 E, =1022 (double precision)

Besides these precisions, an additional representatixterided” is required.
For this one, it is only required that it has a higher accuthey double preci-
sion! Example realisations are:

Intel architecture t =64 15 Bit Exponent
HP-PA RISC t=112 15 Bit Exponenet

IBM 360 and similar This floating point system is ancient but may serve as another

example.
B =16, t =6, (single precision)
t =14, (double precision)
E; =64, E, =63

With increasing length of the mantissa the accuracy of timeprdations is increas-
ing, but the computational expense is also increasing,Xamgle memory consump-
tion and execution time for the arithmetic operatiéndhe length of the mantissa
should be a well-chosen compromise between accuracy esgeirts and computa-
tional costs. Floating point arithmetic is computationtwét fixed number of digits
that is usually much larger than required by the accuracytcaimts. On the other
hand, the often huge number of floating point operations reayl ko a large accu-
mulated error. Gehard Wanner noted that someone who isimgrogt millions of
operation will make millions of errors.

Ln fact, there is also an extended single precision requikemlvever, the role of extended single
precision is usually played by double precision.
2The execution time is heavily harware dependent. There raaygenalty or not.

1.3 Floating Point Numbers 17

The assessment of the accuracy of numbers which are thesésamputations on
a machine requires an in-depth knowledge of the propertigeeainderlying machine
arithmetic and a careful error analysis of the algorithm.

Let the set of floating point numbers be denotedhyMoreover, let MAX be the
largest representable floating point number and MIN be thallest positive repre-
sentable floating point number. Then we have the followirgpprties:

1. The closed intervaHMIN,MIN] contains only three floating point numbers.

2. For representing real numbers we need a mapping (rounding — C. This
mapping has the properties:

IX| > MAX = rd(x) is not defined (overflow).

IX| <MIN = rd(x) =0 (underflow).

3. When representing real numbéxs< MAX it holds
rd(x) = x(1+ €(x))
with
e(x)=0, if x=0

e(x)=-1, if0<|x| <MIN
E(x) <, if MIN < |x| < MAX

and therelative rounding error level

Y- %Bl_t, (rounding to next floating point number)
B Bt (rounding by chopping or similar)

In the examples given above it holds with= g1

2728 ~12.1077

2752 ~11.1016
276 ~11.1019
2111 ~38.103%4

_J16° =~95-10°7
168 ~22.10°16

IEEE: V=

IBM:

4. Floating point arithmetic. Let fl denote the result of a fileg point operation.
Then we assume the following property to hold:

Postulate: fixopy) = rd(xopy)

18 1 BASICS OF ERROR ANALYSIS

with op=+, —, %, /. In this contexw is called themachine accurac{’machine
epsilon”). Then it holds for all operationsy € C andxopy = 0 or |xopy| €
[MIN,MAX]:

fl(xopy) = (xopy)(1+ €) mit [g] < v.

One says that the operations have maximal accuracy.
LetX =x(1+¢€),yY =y(1+¢€). Then this is equivalent to

flixty) =X =+Y
fl(xxy) =X xy=x*Yy
fl(x/y) =X}y,

i.e., the result of the floating point operation is the exastit of the same oper-
ation in real numbers with slightly perturbed operands.

5. Problems of floating point arithmetic.

Overflow. If the absolute value of a result of the operation is largantWAX, it
cannot be represented as a floating point number. This attbexception
is calledoverflow Depending on the hardware or user requirements either
the computation will be cancelled or the result will beconfiettous value
of + INF.

Underflow. If the absolute value of a result of the operation is smalhant
MIN, the result is often (but not always!) rounded to zero.eTrRlative
error of the result becomes 100% in this case!

Cancellation. The addition of two numbers having almost the same absolute
value but opposite signs leads to a decrease of the valid euafldigits.
The result will have a large relative error.

Arithmetic rules. Even in case that there is neither overflow nor underflow, the
usual arithmetic rules do no longer hold. By our postulatehkaddition
and multiplication are commutative. However, these opematare neither
associative nor distributive. This lack of properties baes especially
important when a compiler tries to reorder expressionsdeaio optimize
for speed?

Remarkl.5. The implementation of the already cited ANSI/IEEE standardloating
point arithmetic is nowadays almost a must for hardware gendlherefore, we will
consider it here in more detail. The main goals of the statidiaig committee can be
summarized as follows:

1. A consistent representation of floating point numbersliomachines;

3A good compiler should warn you about such possibilities.

1.3 Floating Point Numbers 19

2. correctly rounded arithmetic;

3. consistent and reasonable handling of exceptionaltming(for example over-
flow, underflow, division by zero).

The standard requires the presence of three number forsatgyl e, doubl e, and
ext ended. The first two formats are defined in details while vendor lamesfree-
dom on how to implement the third one. The only requiremetiiasext ended is
more accurate thathoubl e.

The si ngl e representation uses 32 bits. The number base is 2. In coidras
our model given above, nonzero floating point numbers havamtissa of the kind
1.mp.... Since the first digit is alway 1, there is no need to save iis ®mission is
called “hidden bit” representation. The exponent cont&itéts. The exponent does
not carry a sign by adding 127 to its binary presentation. &mmonents 0 and 255
have a special meaning:

0: As we have seen before, the normalized representation diniippoint numbers
leads to a “hole” in the representable numbers around 0.derdo try to avoid
this hole, close to 0 (which corresponds to the smallest mepb0) unnormal-
ized number representations are allowed. These so-callatbsmal numbers
have a smaller accuracy than the normalized numbers, buttérgal between
—MIN and MIN is filled with equidistant numbers. This way, onashalso a
unique representation of the real number 0 as well as a umdempretation of
the bit pattern consisting of all®.

255: The highest possible exponent is reserved for the repiasamof the “numbers”
+00 and—oo. The mantissa will be 0 in this case. If the mantissa is noakipO,
the value is interpreted as “Not a Number” (NaN). This vakiaecessary for a
consistent behavior in exceptional situations and aritfmeperations including
~+00 and—oo.

Summarizing we obtain the interpretation for all possil2eb®s patterns as given in
Figure 2. The double representation has a completely aoasogtructure where 64
bits are used. Out of these 64 bits, 11 bits are used for thenexp and 52 bits for the
mantissa. The exponent offset is 1023. Details are providétyure 3.

Let us investigate the arithmetic operations now. Firshsoder only the normal-
ized and subnormal numbers. There are four rounding modeede Let, forx € R,
X_ denote the largest floating point number beihg andx, denote the smallest float-
ing point number with> x.

e Rounding towards-co: rd(x) = x_;

e Rounding towards-co: rd(x) = X4 ;

4The hidden bit representation would not allow for a repreésion of 0.

20 1 BASICS OF ERROR ANALYSIS

:I:|a1...a8|b1...b23

Exponenta; ... ag \ numerical value
(000000002 = (0)10 £(0.b1...bp3)2 X 2126
(0000000:}.2 = (1) 10 :|:(l.b1 . b23)2 x 2-126
(000000102 = (2)10 +(1.bg...bp3)2 X 27125

(11111110, = (25410 +(1.by...bp3)p x 2127
Foo, ifby=---=bp3=0
NaN, else

(11111115 = (255)10

Figure 2: IEEE: single precision

:t|a1...a11\b1...b52

Exponentay ...a; | numerical value

(00000000008 = (O)10| +(0.b1...bgp)p x 2 1022
(0000000000), = (1)10| +(L.by1...bgy)p x 2 1022
(0000000001Q = (2) 10 :i:(l.b]_ oo b52)2 x 21021

(1111111111 = (2046)10 +(1.by.. . bgp)p x 21023
{i—oo, ifby=-=bsy=0

11111111113, = (204
(Yo = (204710 NaN, else

Figure 3: IEEE: double precision

e Truncation (rounding towards zero):(sd = X, such that either & rd(x) < x
orx<rd(x) <0;

e Rounding to the nearest floating point number. In case of, &hge"even digit”
rule applies.

The rounding mode to be used in a certain computation canthgydbe software.
Most often, rounding to nearest is the standard mode. ltoweker, useful to have a
look at the documentation of hardware and compiler. Witlpeesto our “rounding
error postulate” the standard requires explicitely thé fulfilled.

Besides the normalized and subnormal numbers the stanolataiics special num-
bers INF and NaN. The result of operations including thessranpds as well as the
behavior in exceptional situations is well defined:

1.4 Rounding Error Propagation 21

Operations including +co: The results shall be computed according to the usual math-
ematical rules. In case of indefinite expressions (exg-,») the result is NaN.

Operations including NaN: The result is always NaN.

Invalid operation: The resultis always NaN (e.g., taking the square root of ating
number).

Division by zero: The result ist-o, where the sign is determined by the sign of the
operands. Since zero has a sign, it holdd= —0, but 1/(+0) # 1/(—0) in
floating point arithmetic!

Overflow: The result will be rounded according to the chosen roundingan Ob-
serve that INF is a floating point number. In case of roundavggtrds zero, the
result of an operation with normalized numbers will neverisF!

Underflow: The result will be zero or a subnormalized number, dependmgro-
grammable flags.

All exceptional situations include the setting of a coresging flag. Moreover, the
programmer (or the compiler has done it for you) can choosetbaeact. One pos-
sibility is to interrrupt the program execution and let thegram take action. Most
often, however, standard reactions are taken: In case ofl@wethe program will be
aborted while with underflow the program proceeds silenith wubnormal numbers.
Read carefully your computer’s documentation!

Another problem in practical computations is that, everrdipised, the hardware
is not fully standard complient. This is especially true Faghly tuned arithmetic
units which sometimes do not have a correct handling of ING l[daN. A more in-
teresting issue is connected with the realization of fleapoint arithmetic on x86
processors. Most FPU operations are carried out in extepckision in hardware
registers. Rounding to standard 32- or 64- bit format happaty when the number is
stored in memory. This behavior is not standard complieotvéver, the result of the
operations is usually more accurate than the result acuptdithe standard would be.
Consequently, the result of a computation may depend onaimpiter as well as on
the optimization level. For most good numerical algoriththss is more a plus than
a deficiency. There had, however, been some discussion&gfiect to this behavior
in the Java community. One of the aims of the Java developwasnto make the pro-
grams completely predictable and machine independenfldating point arithmetic,
this can only be guaranteed if it follows the standard $yti€dn x86 architecture this
can be achieved by saving each individual result to memay@ading it back for the
next operation. This is a huge penalty for the efficiency cbdet

1.4 Rounding Error Propagation

Rounding error propagation is a property that is generagatdalgorithm for solving
a problem in contrast to input and data errors. The behavi@ancalgorithm with

22 1 BASICS OF ERROR ANALYSIS

respect to rounding errors is an essential characteristimomerical algorithm. Other
important properties are the ressources needed by anthlgorinainly computation
time and memory ressources.

In the following considerations, we will always assume thathe algorithm does
not lead to underflow or overflow.

For the purposes of these lecture notesalgorithmis afinitesequenc@y, P, ..., Py
of "elementary” steps in order to solve a given problBmThe realization of the al-
gorithm on a concrete computer is timeplementation The latter distinguishes itself
essentially from the (theoretic, mathematically exacgpathm. While the latter is
usually given in the field of real numbers, the implementatalies on machine arith-
metic. These two notions are different from their usage im@oter Science which is
often identified with a program (say, a Turing machine). A euical algorithm may
be given in many different forms. The most concise one is,cofrge, a program in
some programming language. So the source code corresppadsatgorithm. After
compiling the source code into an executable we have theemmghtation available. It
is the latter which defines the real process on a given hasdwar

More abstract, an algorithf, ..., Py solves a problena = P(d) if and only if
P=Pyo---oP; for a well defined set of dath

In the following example we will carry out the rounding eramalysis for an ele-
mentary but important basic algorithm in numerical lindgeara.

n
Example 1.8.Problem: Compute the sum= ij. of ngiven real numbersy, ..., X,.

A simple algorithm may look as follows (see Figure 4). The portational expense
is n additions.

z=0
fori:=1,....n:z:=z+X

Figure 4: Algorithm for the summation ofreal numbers

The real process on a computer looks like that:
zp:=0,
z:=fl(z_1+%), i=1....n
Hence it holds
z=(z-1+x)(1+&), |al<v,
such that

] = X1(1—|—€1),
= (z1+X2)(1+&) =x1(14&1)(1+ &) +x(1l+ &),

1.4 Rounding Error Propagation 23

and finally
j i
zj = i;Xi k|:||(1+ €)-
The product can be estimated as follows,

m

m
|_|(1+8k):1+28k+ Z £l + Z Ej&E + -+ €162 Em.
k=1 k=1 1<k<I<m 1<j<k<I<m

The number of terms in the individual sums can be evaluatembmbinatorial consid-
erations (combinations fromm elements). This yields

| Al E+--+E--§ |<ﬂ+w+ +mV(m—1)v...1v
kZlk ! m = 1 1.2 1-2----m

<mv(l+q+g+...q",

whereq= mv. If g < 1 holds (and that should be normally the case!), so
m
|> et e Em| < (1.6)
K=1

In practice it holds evemv < 1 such that, in a very good approximation, it holds
asymptotically

ﬂ = mv
1-q
By usingzy = 0 ande; = 0 we obtain
& (n)
=Y x(1+5") (1.7)
2, %
with
) _ -
& =[1(1+&) —1
i
such that

e <min{n—i+1,n—1}v < (n—1)v.

n
Let z, denote the exact sum, = in, then
i=

1z, —2|< {imin{n—i-l—l,n—lﬂxﬂ} v < {(n—l)_i|xi|} v. (L.8)

24 1 BASICS OF ERROR ANALYSIS

This error estimation is a so-calledpriori bound since it depends on the given data
only. Therefore, this bound describes the worst-case sicen@his bound is very
often too crude but it can be attained. In practice, one ceamaompute another value
which is a more realistic estimation of the error (a so-cheposterioriestimation
because it depends on the intermediate results of the catignjt In our example,
one could proceed as follows: It holds

Zi =27 1+X+(Z_1+X)&

Z§
=7 1+X|+ﬁgl
For g = 1+s it holds || < ﬁ = v such that
n n n
Z=2% 2=) (2-2-1) = Z(><e+ad):z*+22a6n,
i= i= i=
hence

i n
z-2l5vy fal
i=

Remarkl.6. (i) The left bound in (1.8) attains its minimum if the valugsare
added in monotonic increasing by absolute value order.

(i) The relative rounding errojz, —z|/|z.| can become extremely large if numbers
with alternating signs are added (cancellation).

(iif) The relative rounding error is small if numbers witheigtical sign are added:
1z, —2|/|z.|<(n—1)v.

The second remark leads to the question if the (bad?) behafvaur summation
algorithm is caused by the algorithm or if there are otheswaa. Previously we have
seen that every floating point numberepresents not only itself but all real numbers
X such thak = rd(X).

Assumption: x € C represents akt € R with X=x(1+ 0),

Consequently, the s€ixs,...,X,} represents alh-tuples{Xy,..., %} with X =
Xi(1+6), |6 <v. Letthe sum ok"beZ

7= Z\)N(.
i=

We interpret the estimate (1.8) in two different ways.

=]

1st interpretation:

Xi(1+ 6) with |6| < v,

N
I
=] EM::

xi(1+ &™) with [<(n— 1)v.

N
I

1.4 Rounding Error Propagation 25

The sumz computed according to the given algorithm is the exact supeof
turbed input data;(1+ si(”)) where|ei(”)|'§(n— 1)v holds. The perturbations

produced by the rounding erroé”) increase the uncertainty contained in the
input data at most by a factor of— 1. ("zis the correct solution of a wrong
problem.*)

2nd interpretation:

-zl =| 3 %)= 3 A1 <V S
|z—z*|'§<n—1>v§m|.

The rounding error of produced by the given algorithm is at most {ime- 1)-
n
fold of the unavoidable error levei Z\\xﬂ which is caused by the uncertainty
i=

of the input data.

Both interpretations lead to the conclusion that the uagait contained in the input
data{xi,...,X,} is only increased quantitatively (namely, by the fadtor= n—1).
Hence, the algorithm is not that bad.

The difference between these two interpretations consigtee following reason-
ings:

1. Construct perturbatior‘én) of the input data such that the computed result is
the exact solution of the problem with these perturbed ddtaen, compare
the perturbations with the error (uncertainty) of the ingata. (backward error
analysis)

2. Estimate the unavoidable error as realistic as possMt@eover, estimate the
rounding error caused by the algorithm. Then, compare ttveserrors. (for-
ward error analysis)

Definition. (i) An algorithm is callechumerically backward stabl®r P (on D) if
for all d € D a perturbatiody exists such thaa = P(d+ Jq) and||dq|| < Fwv||d||
holds for the computed valwe

(i) FordeDis
Dagpi(d, v) := sup{||P(d + &) — P(d)[[[d+ & € D, || &l < v|[d][}
theunavoidable error level
(iif) An algorithm is numerically stabldor P (on D) if the rounding errod, fulfills
16a]| < FsAagpi(d, V)
foralld € D.

26 1 BASICS OF ERROR ANALYSIS

If P is well conditioned, then it holds for numerically backwatdble algorithms
that

la—a] <Ld—d] =Ll < LFwv|d]|.

Hence, the algorithm is even numerically stable sihagy(d, v) ~ Lv||/d|| for realistic
constantg..

Numerical backward stability is the best property of a nuoaalgorithm with re-
spect to rounding errors since the information containgberinput data is transferred
most reliably to the computational results.

Numerical stability is the minimal requirement for a usablanerical algorithm.
If a numerical algorithm is not numerically stable, the rding errors can become
arbitrarily large.

Remarkl.7. (i) F =n—1 is not the best possible constant for summation algo-
rithms.

(i) There exists methods for increasing the accuracy o$the without using longer
mantissas (Kahan-Babuska summation).

(iif) Never implement an algorithm withoat-posteriorierror estimations!

Example 1.9(Fox, Mayers) Compute the integral
1
I = / e 1x"dx
0
Obviously, the following properties are true:

a)0< e IX"<1, xe[0,1]
b)eIx"1 > eI xe0,1]
C)0<Ih<Ih1<Ig<1

d) lim ey 0, if0<x<1
n—oo 1, ifx=1
e) limlh,=0
n—oo
Hlg=1—et!
9)Ih=1-nlh1

The first step in the analysis is the determination of whidhesare considered to be
data of the problem such that they must be considered pedui®incen is a natural
number, itis given exactly. Hence, rounding errors are poBsible when representing
e on the computer. Therefore, the conditioningpivith respect to perturbations ef
() must be investigated. By differentiation with respexétve obtain for the absolute

1.4 Rounding Error Propagation 27

condition numbet
0

L~ —In

oe
_ 1‘3 —-1,n
_/()%(ex X") dx

1
= /O(x—l)exzx”dx.

For the relative condition numbé&r it holds
K= LH
[In]
_1&1-@@@&%me
Jore1xndx
 foa- x)ex_zx”dxe
e fy e—2xdx
1

<-e
e

=1

The problem is very well conditioned.
Let us remark that an estimate of the condition number carptaereed without the
use of differential calculus. One possibility is as followgt 0< é < e. Then

1 1
/(e+5)X1x”dx—/ e Ixdx
0 0

< /01 |(e+ 0t — &t x"dx

! x—1 -1
< [[(e+ 8t -etax

The expression inside of the vertical bars does not chagge kience,

SjE{In<e1+6> (1_ e+16) - (“é)}

T R
nerd) L et OO):

1 1
/(e+5)X1x”dx—/ e Ixdx
0 0

Since

it holds
e(l— 5 +o<52)) (e+5—1)— (e—1)(e+d)
(e+0)e

/01 [(e+6)* 1 - dx=

_s2-¢e 2
=9) +0(69),

28 1 BASICS OF ERROR ANALYSIS

souch that. ~ %2. On the other hand,

1
e(n+1)

1
I, > el/ x"dx =
0
The relative condition number becomes

-2
K~ S Ze(n+1)e=(n+1)(e-2).
Since the integral estimates are not very sharp, this bautatger than that obtained
by differential calculus. Nevertheless, even here we cawdhe conclusion that the
problem is well conditioned.
An obvious algorithm motivated by the properties (f) andigghe one provided
in Figure 5.

l:=1-1/e
fori=1,....n:1:=1-1l

Figure 5: Algorithm for the evaluation of an integral

When implementing this algorithm on a computer with Intelqessor (IEEE Dou-
ble Precision) one obtains the results of Figure 6.

It is seen that during the computation with an accuracy ofd@rdal digits even
the sign is not correct after a few steps. Later, the compatsalts are exploding. The
rounding error analysis will provide an explanation foisthehavior.

Let I,, be the computed values which are subject to rounding ertaiseg be the
error of [y. The realization of the algorithm on the computer leads &fthlowing
process:

lo=1lo(1+€0),

|~n = f|(1— nl~n_1)
=fl(1—nin_1(1+&1p))
= (1—nin_2(1+€10)) (14 &21).

This recursion can be solved explicitly. The explicit regmetation is rather clumsy:

n n

- n ~
In= Z(—l)”*'(lﬁzi) [1 iQ+ej)(Q+e2))+(-1)"]'LJ‘(1+ e1j)(1+&2j)lo.
i= j=i+1 j=

A backward error analysis is not possible in the present same the error does not
have a representation like a factor in frontlgf(ande, respectively). Therefore, we
restrict ourselves to a forward error analysis.

1.4 Rounding Error Propagation 29

In
6.321206e-01
3.678794e-01
2.642411e-01
2.072766e-01
1.708934e-01
1.455329e-01
1.268024e-01
1.123835e-01
1.009320e-01
9.161229e-02
10| 8.387707e-02
11| 7.735223e-02
12| 7.177325e-02
13| 6.694778e-02
14| 6.273108e-02
15| 5.903379e-02
16| 5.545930e-02
17| 5.719187e-02
18 | -2.945367e-02
19| 1.559620e+00
20| -3.019239%e+01
21| 6.350403e+02
22 | -1.396989e+04
23 | 3.213084e+05
24 | -7.711400e+06

©Oooo~NO~NPWDNPE OIS

Figure 6: Results of the algorithm from Figure 5

A first impression of what is going on can be obtained by assgmij =& j =0
forj=1,...,n. Inthat case,

In—In = (=1)"nle.

Consequently, a (possibly small) initial error will be amfipd by n!. Additionally, one
can observe the alternating sign of the computed valuessf| > 1. The latter holds
true for rather smalh. An estimation of the complete expression does not provige a

30 1 BASICS OF ERROR ANALYSIS

new insight. We provide it for the sake of completeness.

n

I”n—lnz_zl(—l)”‘i{(lﬂz,i) ﬁ j(A+ej)lte)) -1 ﬁ J'}+

j=i+1 j=i+1

(—l)n{ﬁj(l+81] l-l-Szj ﬁ }
J

-1 j=1

n

:Zl(—l)n_i Iﬂl j{(l+$2| |£| (14€1j) 1+827j)—1}+
= j=it1

j=i+1

n
(-1 { (1+ &) I_| 1+¢&1j)(1+&) — 1}|o

=]

] n
= <—1>”—'< M J'>~i(n)+(—1)nn!§(()n)|o
i= j=i+1
where, by (1.6),

EV1<2(n—i) + 1v.

This yields the estimate

i — |n|'§i (ﬁlj> [2(n—i) +1v+nl(2n+1)vig
i= j=i+

< nl(n+1)2Igv.

An obvious question is now if there is no well behaved aldonitfor the computa-
tion of the given integral. Remember, that this integralesywvell conditioned. In
principle, this is possible by numerical intergration. e foresent example, there is a
much more elegant solution. Since the "forward recursiga® 1—nl,_; is extremely
unstable, we expect that the "backward recursion* is vaaplst Since lim_. 1, =0,
the algorithm of Figure 7 can be used for approximating

Choose a largamax
l:=0
for i = Nmax,...,N: 1 :=(1=1)/i

Figure 7: Algorithm for the computation of an integral

The implementation of this algorithm on a computer with latehitecture shows
a much better behavior. The value foe 20 is exact (compare Figure 8).

1.4 Rounding Error Propagation

n

In

30
29
28
27
26
25
24
23
22
21
20

0.000000e+00
3.333333e-02
3.333333e-02
3.452381e-02
3.575838e-02
3.708622e-02
3.851655e-02
4.006181e-02
4.173644e-02
4.355743e-02
4.554488e-02

Figure 8: Results of the algorithm from Figure 7

31

