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Rep: Gaussian Elimination

e The basic algorithm for solving a linear system of equa-
tions, Ax = b, is Gaussian Elimination.

e The operation count for GE is ~ n?/3.

e Time is not always proportional to flops. By doing
operations and data acquisition in the right order, time
can be saved.

e When doing LU-factorization, we normally get fill in,
ie L and U are less sparse than A.

Rep: Gaussian Elimination, cont.

e Even if A is non-singular, GE might fail without
pivoting.

e Gaussian Elimination with re-ordering the rows is called
GE with partial pivoting, GEPP. (Very common).

e Gaussian Elimination with re-ordering of both rows
and columns is called GE with complete pivoting, GECP.
(Less common).

Rep: Gaussian Elimination, cont.

e Renumbering the variables x;, corresponds to simulta-
neous permutations of rows and columns in the matrix,

PTAP.

e Multiplication from the left with a permutation matrix
interchanges the rows.

e Multiplication from the right with a permutation ma-
trix interchanges the columns.
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Example (Demmel p45)

1.00-107* 1 1 0
'A< 1 1> makeSL<1.oo-1o+4 1>

1-1074 1
ThenU—( 0 1_(1.10+4).1) But on a 3-
- . ~ (1.00-107% 1.00
digit-machine we get U = ( 0.00 ~1.00 - 10+4)

1.00-10~* 1.00

Then LU = ( 100 0.00

) (NB: £(A)oe ~ 4)

Demmel p45, cont.
This is called numerical instability.
The computed solution x is worthless.

k(L) and k(U) being much larger than x(A)
is a warning.

The problem is well-posed since k(A) is low.

With GEPP we get an accurate and reliable solution.

Special Linear Systems

For some linear systems, a solution can be obtained
even more efficiently the Gaussian Elimination:

Symmetric positive definite matrices (SPD)

Symmetric indefinite matrices

Band matrices

General sparse matrices

Dense matrices depending on a few parameters (< n?)

Banded matrices
The L and U matrices keep the band structure.

Without pivoting, L has the lower bandwidth by and
U has the lower bandwidth by (D Prop 2.3)

With pivoting, L has the lower bandwidth 1 4 bz and
U has the lower bandwidth by + by, (D Prop 2.4)

Banded matrices are very common in numerical appli-
cations, typically meshes with neighbour interaction.
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Real symmetric positive definite matrices

e SPD matrices can be factorized into A = LLT,
by the Cholesky factorization.

e Cholesky only requires half the flops of GE.

e Pivoting is not necessary for Cholesky to be numeri-
cally stable.

e Cholesky factorization is the cheapest way to test if a
matrix is SPD.

Band matrices are common! (Demmel p81)

e Using FDM on a linear 2nd order 1D ODE
y"(x) — p(x) xy'(x) — q(x) x y(z) = r(z)
leads to a non-symmetric, tridiagonal matrix.

e For a small enough grid-size, the matrix is positive
definite.

e From Gerschgorin Theorem we see that all eigenvalues
lie in circles centered at 1 + h2¢; with radius 1.

Example, cont.

e The similarity transformation A = DAD™! makes A
symmetric. A and A have the same eigenvalues.

e Thus Cholesky can be used.

e GE and Cholesky on band matrices are available in
LAPACK routines like ssbsv, sspsv and sptsv.

e Note: A turns almost singular as h — 0.

Sparse Matrices
e A sparse matriz has a lot of zero elements.

e If it is very sparse, algorithms avoiding the zero ele-
ments pay off.

e Often iterative methods are used for sparse matrices.

e For very special matrices, fast direct methods can be
found.

e Vandermonde, Hilbert and Toeplitz are such matrices.
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Graphs & Matrices

A graph, G, consists of a set of vertices, V', and a set
of edges, E, connecting a pair of vertices.

Each graph of n nodes can be described by an n x n-
matrix A where a; ; # 0 iff there is an edge from node
i to node j.

A undirected graph corresponds to a symmetric ma-
trix, since both a; ; and a; ; are either zero or non-zero.

Example: Choice of node numbers?

Given one node at the center and eight more nodes on
a circle perimeter.

All outer nodes connected to their two nearest neigh-
bours and to the center node.

How number the nodes to give a matrix with good GE
behaviour?

Graphs & Matrices (cont.)

Renumbering the nodes will not change the structure
of the graph.

Renumbering the nodes corresponds to simultaneous
permutations of rows and columns in the matrix, PT AP.

Rep: Multiplication from the left with a permutation
matrix interchanges the rows.

Rep: Multiplication from the right with a permutation
matrix interchanges the columns.

Gaussian Elimination of Graphs

When doing LU-factorization, we normally get fill in,
ie L and U are less sparse than A.

The instruction in GE is a; ; = a; j — (aix/akk) - ak

We get fill in (a] ; # 0) when a; ; = 0 and a;  and ag,;
both are non-zero.

When eliminating £ we introduce an edge between 1
and j if both were connected to k.

Choices of node numbering

To find the optimal node numbering is an IV P-complete
problem! We will use an heuristic, reasonably effective
algorithm.

We will discuss three classes of methods: Variable band,
Nested Dissection and Minimum Degree.
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Variable Band: RCM
e Easy to implement.
e Also called Skyline algorithms.

e Elements are filled in only between the “highest” ele-
ment in a column and the diagonal.

e Thin bandwidth thus gives small fill-in.

e The Reversed Cuthill McKee algorithm gives a reason-
ably low bandwidth, typically a cigar shaped band.

Graphs cont.

e A path between two nodes is a sequence of edges
starting at ¢ and ending at j.

e There may be several paths between two nodes
7 and j.

e The number of edges in the shortest path is the
distance between 4 and j.

e The diameter is the longest distance in the graph.

e A node is peripheral if it is one end of a diameter.

RCM cont.

e RCM is a two phase method: First searching for pe-
ripheral nodes, by travelling through the graph. Fi-
nally numbering the nodes according to the diameter
travel.

e Start with the Gibbs-Poole-Stockmeyer algorithm which
builds a level structure for finding the diameter:

e Start in one node, this is level 1.

e The nearest neighbours are level 2.

e Each of (the new) second nearest neighbours are level
3, etc.

e If the graph is connected all nodes will be levelled.

e If there are remaining nodes when all paths are tra-
versed, put them all in the next structure level (they
could be connected through directed edges)

e Now repeat the procedure starting from a node in the
last level. We will get a new level structure of at least
the same height. (Why?)

e Repeat the procedure until the number of levels do
not seem to rise anymore. The number of levels is
(probably) the distance.
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e The starting and final nodes are called pseudo-peripheral.

e RCM is obtained from the longest level structure, num-
bering the nodes level by level.

e The matrix will get a cigar like shape, open at the end.

e RCM was introduced by E Cuthill and J McKee in
1969.

e In Matlab the routine is called symrcm.

e Matlab and Octave do not produce the same ordering!

Example: Laplace on L-shaped region

e Assuming the follwing L-shaped 2D region and the reg-
ular 5-point stencil for the 2D Laplacian.

e Write down the matrix A using the “standard” node
numbering

Ne)

1 3
2 4

o J O Lt
—
N = O

e Renumber the grid using RCM.

Nested Dissection

e ND, also called substructuring is based on finding a
separating set of nodes dividing the graph into two
parts, substructures.

e Eliminate the nodes inside each substructure first, and
then take the separating set.

e The resulting matrix will have a block structure.

A 0 Agg
A= 0 Az Ao
Az Aszy Asg

e The division into substructure can then be repeated
recursively.

e Nested Dissection was introduced by Alan J George in
1973.

e For planar graphs the resulting matrix has O(nlogn)
nonzeros.

e In Matlab the routine is called nested.




KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2011.

Minimum Degree algorithm

The largest possible fill-in when eliminating node k
is the product of non-diagonal non-zeros in row and
column k respectively.

If 74 is the number of non-zeros in row k, and ¢, is the
number of non-zeros in column k, the product my ; =
(re — 1) - (ex, — 1) is called the Markowitz’ costs.

For a symmetric matrix this is the square of the num-
ber of edges meeting node k. This number is called the
degree of node k.

Eliminating a node with minimum degree will give the
smallest possible fill-in.

Even though MD is a greedy algorithm it gives surpris-
ingly good results.

MD is derived from a method first proposed by H M
Markowitz in 1957.

In Matlab the MD routine has been replaced by an
AMD routine, the symmetric approximative multiple
minimum degree function, symamd. It works faster
(and better).

Some review questions:

Q38. Describe how a graph defines a matrix and vice
versa.

Q39. How does fill-in occur when one does Gaussian
elimination on a sparse matrix. Describe it in both
matrix and graph terms.

Q40. What is pivoting for sparsity? Describe it in
both matrix and graph terms.

Q42. Describe the RCM algorithm.

J/NC



