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Linear systems: Ax = b

• If A is n×n and non-singular then x = A−1b uniquely.

• If A is m × n and m < n the problem is underde-

termined (and thus usually have infinitely many solu-
tions).

• If A is m×n and m > n the problem is overdetermined

and then normally have no solution. This is the topic
for today.

• We will try to find the “best approximate solution” to
the overdetermined system.

Example 3.1 Ruhe p21

Given m pairs of data points (t1, y1), . . . (tm, ym) from
a sample of radioactive decay. The intensity is modeled by

y =

n
∑

j=1

αje
−λjt, αj , λj ≥ 0

The residual is then

r =









y1
y2
...
ym









−









e−λ1t1 · · · e−λnt1

e−λ1t2 · · · e−λnt2

...
...

...
e−λ1tm · · · e−λntm

















α1

α2
...
αn









= y−A(λ, t)x(α)

• r = y −A(λ, t)x(α)

• The residual, r, is the difference between the observa-

tion vector y and the product of the design or system
matrix A and the parameter vector x.

• The task at hand is to compute parameters α and λ
such that the residual is minimized in an appropriate
norm.

• If the λ are known and only the α need to be deter-
mined the system is linear, otherwise non-linear.

Choice of norm

• If the errors are independent we choose the Euclidian
norm ||r||2 = (rT r)1/2 = (

∑m
i=1 r

2
i )

1/2. It is the most
common and we talk about the least squares method.
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• If we want to minimze the maximal residual we use
the infimum norm ||r||∞ = maxi |ri|. This is typical
for polynomial interpolation.

• Another choice is the 1-norm ||r||1 =
∑

i |ri|. This is
typically used when avoidance of outliers is important.

Surveyers work

• The least squares method was invented by Gauss try-
ing to improve accuracy in the German surveyers and
astronomers measurement.

• In 1974-78 the US National Geodetic Survey updated
its database in the same manner - solving the biggest
least squares problem ever: about 6 million equations
and 400000 unknowns.

Solutions

• Normal equations. Fast but not very accurate. Ad-
equate when the condition number is small.

• QR decomposition. Twice the amount of work but
more accuarate. The standard method.

• SVD. Even more work but works even if A is not full
rank.

Normal equations

• To derive the normal equations we need to minimize
||r||22 = rT r = (b−Ax)T (b −Ax)

• Leads to ATAx = AT b or x = (ATA)−1AT b

• Proof: Let x′ = x+ e then

||Ax′ − b||22 = (Ax′−b)T (Ax′−b) = (Ae+Ax−b)T (Ae+Ax−b)

= (Ae)T (Ae) + (Ax− b)T (Ax − b) + 2(Ae)T (Ax − b)

= ||Ae||22+||Ax− b||22+2eT (ATAx−AT b) = ||Ae||22+||Ax− b||22

• This is equivalent to the Pythagorean theorem. The
solution is optimized whrn the residual is orthogonal
to the space spanned by the columns of A.

• Since ATA is symmetric and positive definite we can
use Cholesky factorization. The cost for Cholesky is
1
3n

3 and the cost for obtaining ATA from A is n2m.

• Since m > n forming ATA dominates the cost!

QR Decomposition

• Thm 3.1 (Dp107) Let A be m × n with m > n and
rank(A)=n. Then there exists a unique m× n orthog-
onal matrix Q (QTQ = In) and a unique n× n upper
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triangular matrix R with positive diagonal elements
rii > 0 such that A = QR.

• First proof uses Gram-Schmidt orthogonalization pro-
cess. If apply GS to the columns of A = [a1, a2, . . . an
one gets a sequence of orthonormal vectors qi obtained
from a linear combination of a1 to ai.

• Unfortunately GS is numerically unstable in floating
point arithmetic when the columns of A are nearly de-
pendent.

• Modified Gram-Schmidt (MGS) is more stable but could
still end up with a Q which is far from orthogonal.

x = (ATA)−1AT b

= (RTQTQR)−1RTQT b

= (RTR)−1RTQT b

= R−1QT b

• The cost for QR-decomposition is about 2n2m− 2
3n

3,
about twice the cost of normal equations if m >> n
and about the same if m = n.

Singular Value Decomposition

• SVD is used for many things, not only least squares.

• Thm 3.2 (Dp109) Let A be an arbitrary m× n matrix
with m ≥ n. Then we can write A = UΣV T , where
U is an m × n such that UTU = I, V is an n × n
such that V TV = I, and Σ = diag(σ1, . . . , σn), where
σ1 ≥ σ2 · · · ≥ σn ≥ 0. The columns u1, . . . , un of U
are called left singular vectors. The columns v1, . . . , vn
of V are called left singular vectors. The σi are called
singular values.

• Proof of Thm 3.2: We assume that SVD exists for an
(m−1)×(n−1) matrix and then prove it for an n×m.
SVD has a large number of properties:

• If A is symmetric, then σi = |λi| and vi = sign(λi)ui.

• The eigenvalues of ATA are σ2
i . The right singular

vectors are the corresponding orthogonal eigenvectors.

• The eigenvalues of AAT are σ2
i and m−n zeroes. The

left singular vectors are the corresponding orthogonal
eigenvectors.

• If A has full rank, the least squares solution of Ax = b
is x = V Σ−1UT b.

• ||A||2 = |σ1|.

• If A is square and non-singular then ||A−1||−1
2 = σn

and ||A||2||A
−1||2 = σ1

σn
.

• Suppose that A is m × n and has rank n with m >
n, then A+ = (ATA)−1AT = R−1QT = V Σ−1UT is
called the (Morse-Penrose) pseudo-inverse of A.
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• If m < n then A+ = AT (AAT )−1.

Rank Deficient least Squares Problems

• What happens if A is rank deficient (or nearly)?

• This occurs often, like signals in noisy data (Lab3),
digital image restoration or compression, etc.

• Rank deficient problems are very ill-conditioned.

• Making an ill-conditioned problem well-conditioned by
imposing extra conditions on the solution is called reg-

ularization.

• If A is rank deficient the least squares solution is not
unique.

• Prop 3.1 (Dp125) Let A be an m × n matrix with
rank(A)=r < n. Then there is an n − r dimensional
set of vectors that all minimizes ||(||Ax− b).

• Proof: Let z be such that Az = 0 then if x minimizes
||Ax− b|| then so does x+ z.

• If, due to round-off, some σi has a small value rather
than zero, Then the unique solution is likely to be very
large.

• Thus: If A is nearly rank deficient (σmin is small) the
solution x is ill-conditioned and possibly very large.

Prop 3.3 (Dp126) When A is exactly singular, the x
tht minimizes ||Ax − b||2 can be characterized as follows:
Let A = UΣV T have rank r < n. Then write

A = [U1, U2]

[

Σ1 0
0 0

]

[V 1, V 2]T = U1Σ1V
T
1

where Σ1 is r × r and non-singular and U1 and V1 have r
columns. Let σ = σmin(Σ1). Then:

• all solutions x can be written as x = V1Σ
−1
1 UT

1 b+V2z,
z being any vector.

Proof: Choose Ũ such that W = [U1, U2, Ũ ] is an or-
thogonal matrix.

||Ax− b||22 = ||WT (Ax − b)||22 = ||





UT
1

UT
2

ŨT



 (U1Σ1V
T
1 x− b)||22

= ||Σ1V
T
1 x− UT

1 b||22 + ||UT
2 b||22 + ||ŨT b||22

Thus, x is multiplied with V1, anything with V2 will add
zero.

• the solution x has minimal norm ||x||2 precisely when
z = 0, in which case x = V1Σ

−1
1 UT

1 b and ||x||2 ≤
||b||2/σ.

Proof: Since V1 and V2 are mutually orthogonal by
Pythagoras

||x||22 = ||V1Σ
−1
1 UT

1 b||22 + ||V2z||
2
2
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which is minimized when z = 0.

• Changing b into b + δb can change the minimal norm
solution x by at most ||δb||2/σ

Proof:

||V1Σ
−1
1 UT

1 δb||2 ≤ ||Σ−1
1 ||2||δb||2 = ||δb||2/σ

• The norm and condition number of the unique mini-
mal norm solution x depends on the smalleest non-zero
singular value of A.

• This is the key to a practical algorithm!

Pseudoinverse for Rank Deficient matrix

• Let A = UΣV T = U1Σ1V
T
1 Then A+ = V1Σ

−1
1 UT

1 or

A+ = V TΣ+U where Σ+ =

[

Σ1 0
0 0

]+

=

[

Σ−1
1 0
0 0

]

• So the least squares solution is always x = A+b. When
A is rank deficient, x has minimum norm.

• So we need to know the rank of A and the smallest
singular value.

Example: Demmel p128

A =

(

1 0
0 0

)

has smallest nonzero eigenvalue 1. With

b =

(

1
1

)

we get least square solution x =

(

1
0

)

with con-

dition number 1/σ = 1.

But if we have A =

(

1 0
0 ε

)

we have smallest nonzero

eigenvalue ε and x =

(

1
1/ε

)

and condition number 1/ε.

• The practical solution is to treat all σi smaller than a
tolerance (normally O(ε) · ||A||2) as zero.

• This is called truncated SVD

• A similar idea can be used in QR-decomposition, but
it is less reliable.

Some review questions:

• Q45. What is the range R(A) of a matrix A? How do
you find a basis for it by means of SVD?

• Q50. What is meant by a rank deficient matrix?

• Q51. How can we determine A(k), the matrix of rank
k closest to a given matrix A using SVD?

• Q53. What are the advantages and disadvantages of
replacing the matrix A by a lower rank approximation
A(k) when solving a least squares problem?
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