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DN2222
Applied Numerical Methods
- part 2:
Numerical Linear Algebra

Lecture 5
Singular Value Decomposition (cont)
&
Eigenvalues

2011-11-15

Note!

Next Lecture is
Friday 18/11 at 13-15
in room E36

Next Lab Session is
Tuesday 22/11 at 13-15
in room 1635

Def of eigen-values and -vectors, (Dp140)

e The polynomial p(\) = det(A — AI) is called the char-
acteristic polynomial of A. The roots of p(A) = 0 are
the eigenvalues of A (D: Def 4.1)

e The characteristic polynomial of an n x n matrix A is
of degree n and thus have n roots.

e A non-zero vector x satisfying Az = Az is a (right)
eigenvector for the eigenvalue A. (D: Def 4.2)

e A non-zero vector y satisfying y* A = Ay™* is a left eigen-
vector for the eigenvalue . (D: Def 4.2)

General

e Algorithms for eigenvalues problems can roughly be di-
vided into two categories: direct and iterative methods.

e Since determining eigenvalues is always an iterative
method, by direct is meant methods that converges
within a certain number of iterations. They usually
cost O(n?) and are independent of the matrix entries.

e Jterative methods are usually used for sparse matri-
ces, where the matrix-vector multiplication is relatively
cheap. Convergence rate depends strongly on the ma-
trix entries.

e Most algorithms will involve transforming the matrix
A into a simpler, or canonical form, from which it is
easy to calculate the eigen-values and eigen-vectors.

e Let S be any nonsingular matrix. Then A and B =
S~LAS are similar matrices and S is a similarity trans-
formation. (D: Def 4.3)

e Let B=S"1AS,s0 A and B are similar. Then A and
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B have the same eigenvalues, and z (or y) is a right
(or left) eigenvector of A iff S~1z (or S*y) is a right
(or left) eigenvector of B.

Let B=S"1AS, so A and B are similar. Then A and
B have the same eigenvalues, and z (or y) is a right
(or left) eigenvector of A iff S~1z (or S*y) is a right
(or left) eigenvector of B.

PROOF1: Using that det(XY) = det(X) - det(Y) for any
square matrices, we have
det(A — X) = det(S™H(A — X\I)S) = det(B — \I)

PROOF2: Az = Az hold iff S™1ASS~ 1z = AS~ !z or
B(S7lz) = (S x)

General ideas

The two simplest matrix forms for determining eigen-
values are XXX and YYY.

To avoid complex numbers we might consider block
triangular matrices. Why?

The two most common canonical forms are the Jordan
form and the Schur form.

Given A there exists a nonsingular S such that S~1AS =
J, where J is in Jordan canonical form. This means

that J is block diagonal, with J = diag(Jn, (A1), Jny (A2), . ..

and the n; x n; matrix

A1 0
In; =
0 A

J is unique, up to permutations of the blocks.

Each J,,(A) is called a Jordan block with eigenvalue A
of algebraic multiplicity m.

If n, = 1 and that )\; is an eigenvalue of only that
block, A; is called a simple eigenvalue.

If all n; = 1, J is diagonal and A is diagonalizable,
otherwise it is called defective.

A defective matrix does not have n eigenvectors.

In invariant subspace of A is a subspace XeR™ such
that zeX — AzreX

The Jordan form tells everything about a matrix: eigen-
values, eigenvectors and invariant subspaces. But it is
bad to compute for 2 numerical reasons! 1. It is sen-
sitive to round-off errors. 2. It cannot be computed
stably in general.
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e So instead of computing S™'AS = J, where S can
be arbitrarily ill-conditioned, we will restrict S to be
orthogonal (so k2(S) = 1) to guarantee stability:

o The Schur canonical form: Given A, there exists a
unitary matrix () and an upper triangular matrix T
such that Q*AQ = T. The eigenvalues of A are the
diagonal entries of 7. (D: Thm 4.2)

PROOF We use induction. It is obviously true for n =
1. Let A be an eigenvalue with corresponding normalized
eigenvector u. Choose U such that U = [u, U] is a unitary
matrix. Then

: [ ) a gy [wAe wAT
v 'A'U{U*} A-[u U]{U*Au U*AU}

But wrAu = uwAu = Aufu = A and U*Au = U u =
AU*u =0 and U*AU is a (n — 1) X (n — 1) matrix. Then

e Xz ] 1 0][x 2Q][1 0
vav=[3 ofe]= o &)lo Tllo &)

so Q*AQ =T with Q =U [(1) g)}, unitary as desired.

e The real Schur canonical form: If A is real, there ex-
ists a real orthogonal matrix V such that VTAV =T
is quasi-upper triangular. This means that 7T is block
upper triangular with 1-by-1 and 2-by-2 blocks on the
diagonal. Its eigenvalues are the eigenvalues of the di-
agonal blocks. The 1-by-1 blocks correspond to real
eigenvalues. The 2-by-2 blocks correspond to a com-
plex conjugate pair of eigenvalues.

Computing eigenvectors from the Schur form

e Suppose A = t;; has multiplicity 1. Write (T—AI)xz =0

as
[Ty — A T2 T3 1

0 = 0 0 ng i) =
0 0 T33 — A I3

(Th1 — M)y + Thoxo + Thisxs
To3x3
(T33 — )\I)$3

where T11 is (Z*l) X (’L* 1), TQQ =Aislx 1, and T33 is
(n—i)x(n—1), and z is split correspondingly. Since A is
simple, (T33— AI) is nonsingular, thus (755 —AI)zs =0
implies 23 = 0. Choosing (arbitrarily) x2 = 1 we get
€T = —((T11 — )\I)_1T12 SO

1 — (T — M) 'Tyo
x= |x2 | = 1
I3 0

so we only need to solve a triangular system for z;.

Insight
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e Not all matrices are diagonalizable, but we can trans-
form any square matrix into triangular form by means
of a unitary (or orthogonal) similarity. This is the con-
sequence of the Schur theorem.

Multiple eigenvalues
e Multiple eigenvalues have infinite condition number.

e Eigenvalues “close to multiple” have large condition
numbers, since there is a small A such that A + JA
has multiple eigenvalues.

e Let A be a simple eigenvalue of A with right eigenvector
2 and left eigenvector y, normalized so that ||z||s =
[ly|l2 = 1. Let A+ 6 be the corresponding eigenvalue
of A+ 6A. Then

5= L2 1 ogppalP)
0A
o3 < P20 oqiaalR)

so 1/]y*z| is the condition number of the eigenvalue .
(D: Thm 4.4)

e Let A be normal (ie AA* = A*A). Then |6A| < ||0A||+
O(||6A]*) (D: Cor 4.1)

e Let A have all simple eigenvalues with right eigenvector
2 and left eigenvector y, normalized so that ||z||s =
[lyll2 = 1. Then the eigenvalues of A+ §A lies in disks

[16A]l2

centered at \; with radius n - PR

Power method:

o Given x(y we iterate:

i=0

while ...
y=A*x;
x=y/norm(y); % Approx eigenvector
d=x’*A*x; ) Approx eigenvalue
i=i+1;

end;

e It will find the largest eigenvalue.

e The convergence rate depends on |Az/A1|. Even though
[A2/A1] < 1 convergence is often slow.

Inverse power method:

o Given x(y we iterate:

i=0

while ...
y=(A-s*I)\x;
x=y/norm(y); % App eigenvector
d=x’*A*x; % App eigenvalue
i=i+1;

end;
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It will find the largest eigenvalue of (A — sI)~!
ie the smallest eigenvalue of (A — sI)
ie the eigenvalue of A closest to s.

If s is very close to A1 the ratio (A — s)/(A2 — s) will
be very small, thus convergence is fast.

Householder algorithm:

A Hessenberg matrix is upper triangular with one non-
zero subdiagonal.

If A is Hermitian (if real: symmetric) then the Hessen-
berg matrix will be symmetric and thus tridiagonal.

The Householder algorithm transforms the matrix A
into Hessenberg form with an orthogonal similarity
transformation, A = WHWT

The matrix W is a product of Householder transforma-
tions (or elementary reflections) W = Hy Hs .. .H(n,g)

An elementary reflection is a matrix, H = I — 2uu”,
where the vector u has |Ju|l2 = 1. An elementary re-
flection is both orthogonal and symmetric.

H,=1- 2uku£ makes all elements except the k + 1
first elements in column k of A zero. Then vector uy
is zero in the first k positions. (uy is calculated from
the last n — k elements of column & of matrix A)

With A®5 = 7AW and A® = A0S H, we have

rT x T T T X T
r T x T ryy
AV = |z = =z r| A0 = |0 ¥y y
: 0 i
LT x X x 0 v y
[z 2z =z T z Z
ro oz z roz oz
A = |0 2z =z 2142 = |0 r w
0 : 00 :
L0 2z =z z 0 0 w
Example (Ruhe p 30, extended):
6 2 3 13
. 5 11 10 8
A = magic(4) = 9 7 6 19
4 14 15 1

H,=1- 2ukuf with uy.x = 0, upt+1 = (@py1,6 — @) /7
and v; = ag;/r, j=k+2,k+3,...,n with

a = —sgn(ar41,k)4/ Z?:kﬂ a?k and

r = /2a(a — ag41,%) (ie ug is constructed using the
last n — k components of column ay)
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T T T T
A —wTaw = |2 % T T Gith W = Hy H,.
0 =z = «x
0 0 =z «
1 0 0 O 1 0 0 O
0 =z = = 01 0 O
= 0 z z =z and H; = 0 0 =z =
0 = = 0 0 « =z

Both Hy and W are orthogonal. But even though Hy,
is symmetric, W is not.

On computation efficiency:

Even though we saw H}, as full matrices above, they are
really not computed that way. Computing H;a, where
a is a column of A would require n? multiplications.

We use the fact that H; is a rank 1 matrix.

Hia= (I —2uu®a =a—2uu’a = a —u(2u’a)

uTa is a scalar, created by n multiplications. Moving
up multiplication by 2 means a single multiplication.
Now we have a scalar times a vector, another n multi-
plications. Finally subtracting two arrays, n additions.
This is 2n operations, instead of n?

Some review questions:

Q55. What does the position of the eigenvalues in the
complex plane say about the behaviour of the solution
of the ODE system

d
d—f = Az, xz(0)=xg
Q56. What is meant by two matrices being similar?

Q57. Show that two similar matrices have the same
set of eigenvalues. How are the eigenvectors related?



