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DN2222
Applied Numerical Methods

- part 2:
Numerical Linear Algebra

Lecture 5
Singular Value Decomposition (cont)

&
Eigenvalues

2011-11-15

Note!

Next Lecture is
Friday 18/11 at 13-15

in room E36

Next Lab Session is
Tuesday 22/11 at 13-15

in room 1635

Def of eigen-values and -vectors, (Dp140)

• The polynomial p(λ) = det(A− λI) is called the char-
acteristic polynomial of A. The roots of p(λ) = 0 are
the eigenvalues of A (D: Def 4.1)

• The characteristic polynomial of an n× n matrix A is
of degree n and thus have n roots.

• A non-zero vector x satisfying Ax = λx is a (right)
eigenvector for the eigenvalue λ. (D: Def 4.2)

• A non-zero vector y satisfying y∗A = λy∗ is a left eigen-
vector for the eigenvalue λ. (D: Def 4.2)

General

• Algorithms for eigenvalues problems can roughly be di-
vided into two categories: direct and iterative methods.

• Since determining eigenvalues is always an iterative
method, by direct is meant methods that converges
within a certain number of iterations. They usually
cost O(n3) and are independent of the matrix entries.

• Iterative methods are usually used for sparse matri-
ces, where the matrix-vector multiplication is relatively
cheap. Convergence rate depends strongly on the ma-
trix entries.

• Most algorithms will involve transforming the matrix
A into a simpler, or canonical form, from which it is
easy to calculate the eigen-values and eigen-vectors.

• Let S be any nonsingular matrix. Then A and B =
S−1AS are similar matrices and S is a similarity trans-
formation. (D: Def 4.3)

• Let B = S−1AS, so A and B are similar. Then A and

1



KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2011.

B have the same eigenvalues, and x (or y) is a right
(or left) eigenvector of A iff S−1x (or S∗y) is a right
(or left) eigenvector of B.

• Let B = S−1AS, so A and B are similar. Then A and
B have the same eigenvalues, and x (or y) is a right
(or left) eigenvector of A iff S−1x (or S∗y) is a right
(or left) eigenvector of B.

PROOF1: Using that det(XY ) = det(X) · det(Y ) for any
square matrices, we have
det(A− λI) = det(S−1(A− λI)S) = det(B − λI)

PROOF2: Ax = λx hold iff S−1ASS−1x = λS−1x or
B(S−1x) = λ(S−1x)

General ideas

• The two simplest matrix forms for determining eigen-
values are XXX and YYY.

• To avoid complex numbers we might consider block
triangular matrices. Why?

• The two most common canonical forms are the Jordan
form and the Schur form.

• GivenA there exists a nonsingular S such that S−1AS =
J , where J is in Jordan canonical form. This means
that J is block diagonal, with J = diag(Jn1

(λ1), Jn2
(λ2), . . . Jnk

(λk))
and the ni × ni matrix

Jni
=











λi 1 0
. . .

. . .

. . . 1
0 λi











J is unique, up to permutations of the blocks.

• Each Jm(λ) is called a Jordan block with eigenvalue λ
of algebraic multiplicity m.

• If ni = 1 and that λi is an eigenvalue of only that
block, λi is called a simple eigenvalue.

• If all ni = 1, J is diagonal and A is diagonalizable,
otherwise it is called defective.

• A defective matrix does not have n eigenvectors.

• In invariant subspace of A is a subspace XǫRn such
that xǫX → AxǫX

• The Jordan form tells everything about a matrix: eigen-
values, eigenvectors and invariant subspaces. But it is
bad to compute for 2 numerical reasons! 1. It is sen-
sitive to round-off errors. 2. It cannot be computed
stably in general.
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• So instead of computing S−1AS = J , where S can
be arbitrarily ill-conditioned, we will restrict S to be
orthogonal (so κ2(S) = 1) to guarantee stability:

• The Schur canonical form: Given A, there exists a
unitary matrix Q and an upper triangular matrix T
such that Q∗AQ = T . The eigenvalues of A are the
diagonal entries of T . (D: Thm 4.2)

PROOF We use induction. It is obviously true for n =
1. Let λ be an eigenvalue with corresponding normalized
eigenvector u. Choose Ũ such that U = [u, Ũ ] is a unitary
matrix. Then

U∗ · A · U =

[

u∗

Ũ∗

]

·A · [u Ũ ] =

[

u∗Au u∗AŨ
Ũ∗Au Ũ∗AŨ

]

But u∗Au = u∗λu = λu∗u = λ and Ũ∗Au = Ũ∗λu =
λŨ∗u = 0 and Ũ∗AŨ is a (n− 1)× (n− 1) matrix. Then

U∗AU =

[

λ x
0 Q̃T̃ Q̃∗

]

=

[

1 0
0 Q̃

][

λ xQ̃
0 T̃

][

1 0
0 Q̃∗

]

so Q∗AQ = T with Q = U

[

1 0
0 Q̃

]

, unitary as desired.

• The real Schur canonical form: If A is real, there ex-
ists a real orthogonal matrix V such that V TAV = T
is quasi-upper triangular. This means that T is block
upper triangular with 1-by-1 and 2-by-2 blocks on the
diagonal. Its eigenvalues are the eigenvalues of the di-
agonal blocks. The 1-by-1 blocks correspond to real
eigenvalues. The 2-by-2 blocks correspond to a com-
plex conjugate pair of eigenvalues.

Computing eigenvectors from the Schur form

• Suppose λ = tii has multiplicity 1. Write (T−λI)x = 0
as

0 =





T11 − λI T12 T13

0 0 T23

0 0 T33 − λI









x1

x2

x3



 =





(T11 − λI)x1 + T12x2 + T13x3

T23x3

(T33 − λI)x3





where T11 is (i−1)×(i−1), T22 = λ is 1×1, and T33 is
(n−i)×(n−i), and x is split correspondingly. Since λ is
simple, (T33−λI) is nonsingular, thus (T33−λI)x3 = 0
implies x3 = 0. Choosing (arbitrarily) x2 = 1 we get
x1 = −((T11 − λI)−1T12 so

x =





x1

x2

x3



 =





−(T11 − λI)−1T12

1
0





so we only need to solve a triangular system for x1.

Insight
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• Not all matrices are diagonalizable, but we can trans-
form any square matrix into triangular form by means
of a unitary (or orthogonal) similarity. This is the con-
sequence of the Schur theorem.

Multiple eigenvalues

• Multiple eigenvalues have infinite condition number.

• Eigenvalues “close to multiple” have large condition
numbers, since there is a small δA such that A + δA
has multiple eigenvalues.

• Let λ be a simple eigenvalue of A with right eigenvector
x and left eigenvector y, normalized so that ||x||2 =
||y||2 = 1. Let λ+ δλ be the corresponding eigenvalue
of A+ δA. Then

δλ =
y∗δAx

y∗x
+O(||δA||2)

|δλ| ≤
||δA||

|y∗x|
+O(||δA||2)

so 1/|y∗x| is the condition number of the eigenvalue λ.
(D: Thm 4.4)

• Let A be normal (ie AA∗ = A∗A). Then |δλ| ≤ ||δA||+
O(||δA||2) (D: Cor 4.1)

• Let A have all simple eigenvalues with right eigenvector
x and left eigenvector y, normalized so that ||x||2 =
||y||2 = 1. Then the eigenvalues of A+ δA lies in disks

centered at λi with radius n · ||δA||2
|y∗x|

Power method:

• Given x0 we iterate:
i=0

while ...

y=A*x;

x=y/norm(y); % Approx eigenvector

d=x’*A*x; % Approx eigenvalue

i=i+1;

end;

• It will find the largest eigenvalue.

• The convergence rate depends on |λ2/λ1|. Even though
|λ2/λ1| < 1 convergence is often slow.

Inverse power method:

• Given x0 we iterate:
i=0

while ...

y=(A-s*I)\x;
x=y/norm(y); % App eigenvector

d=x’*A*x; % App eigenvalue

i=i+1;

end;
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• It will find the largest eigenvalue of (A− sI)−1

ie the smallest eigenvalue of (A− sI)
ie the eigenvalue of A closest to s.

• If s is very close to λ1 the ratio (λ1 − s)/(λ2 − s) will
be very small, thus convergence is fast.

Householder algorithm:

• A Hessenberg matrix is upper triangular with one non-
zero subdiagonal.

• If A is Hermitian (if real: symmetric) then the Hessen-
berg matrix will be symmetric and thus tridiagonal.

• The Householder algorithm transforms the matrix A
into Hessenberg form with an orthogonal similarity
transformation, A = WHWT

• The matrixW is a product of Householder transforma-
tions (or elementary reflections) W = H1H2 . . . H(n−2)

• An elementary reflection is a matrix, H = I − 2uuT ,
where the vector u has ||u||2 = 1. An elementary re-
flection is both orthogonal and symmetric.

• Hk = I − 2uku
T
k makes all elements except the k + 1

first elements in column k of A zero. Then vector uk

is zero in the first k positions. (uk is calculated from
the last n− k elements of column k of matrix A)

• With A(1.5) = H1A
(1) and A(2) = A(1.5)H1 we have

A(1) =













x x x · · · x
x x x · · · x
x x x · · · x
...

...
...

...
x x x · · · x













, A(1.5) =













x x x · · · x
r y y · · · y
0 y y · · · y

0
...

...
...

0 y y · · · y













A(2) =













x z z · · · z
r z z · · · z
0 z z · · · z

0
...

...
...

0 z z · · · z













A(2.5) =













x z z · · · z
r z z · · · z
0 r w · · · w

0 0
...

...
0 0 w · · · w













Example (Ruhe p 30, extended):

• A = magic(4) =







16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1







• Hk = I − 2uku
T
k with u1:k = 0, uk+1 = (ak+1,k − α)/r

and vj = akj/r, j = k + 2, k + 3, . . . , n with

α = −sgn(ak+1,k)
√

∑n
j=k+1 a

2
jk and

r =
√

2α(α− ak+1,k) (ie uk is constructed using the
last n− k components of column ak)
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• A(H) = WTAW =







x x x x
x x x x
0 x x x
0 0 x x






with W = H1H2.

• H1 =







1 0 0 0
0 x x x
0 x x x
0 x x x






and H2 =







1 0 0 0
0 1 0 0
0 0 x x
0 0 x x






.

• Both Hk and W are orthogonal. But even though Hk

is symmetric, W is not.

On computation efficiency:

• Even though we sawHk as full matrices above, they are
really not computed that way. Computing H1a, where
a is a column of A would require n2 multiplications.

• We use the fact that H1 is a rank 1 matrix.
H1a = (I − 2uuT )a = a− 2uuTa = a− u(2uTa)
uTa is a scalar, created by n multiplications. Moving
up multiplication by 2 means a single multiplication.
Now we have a scalar times a vector, another n multi-
plications. Finally subtracting two arrays, n additions.
This is 2n operations, instead of n2

•

Some review questions:

• Q55. What does the position of the eigenvalues in the
complex plane say about the behaviour of the solution
of the ODE system

dx

dt
= Ax, x(0) = x0

• Q56. What is meant by two matrices being similar?

• Q57. Show that two similar matrices have the same
set of eigenvalues. How are the eigenvectors related?
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