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Transformation algorithms

e For matrices of moderate size, the standard method to
compute eigenvalues is through similarity transforma-
tions.

o If there are n linearly independent eigenvectors. Let
them build the non-singular X and then

AX = XD, giving A= XDX"!, where D = diag(\;)

in which case we say A is diagonalizable.

e Not all matrices are diagonalizable, but one can trans-
form any square matrix into triangular form by a uni-
tary (orthogonal) similarity transformation. That is
what the Schur theorem says.

e Any practical transformation algorithm is divided into
two phases: an initial reduction (into Hessenberg form,
by n — 2 elementary transformations), followed by an
iterative phase where the remaining sub-diagonal ele-
ments are shrunk (usually by the QR algorithm)

Final algorithm - QR

e Given the transformation into Hessenberg form. Let
Ay = H (the Hessenberg matrix) and U; = W (the
transformation matrix).

for k=1,2,. ..
Factorize Ay = Qi Ry with Qi orthogonal and Ry,
upper triangular.

Multiply Ax11 = RpQxk
— Accumulate Upy1 = UpQp

e Then A1 = Ul AUy is (almost) upper triangular.

e Convergence for the QR algorithm without shifts is
slow.

e If the matrix Ay is singular, ie has a zero eigenvalue,
one diagonal element of Ry will be zero, usually the
last. Then the remaining (n — 1) x (n — 1) sub-matrix
contains the other eigenvalues. Shrinking the size of
the problem like this is called deflation.

Final algorithm - QR with shifts
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e Given the transformation to Hessenberg form, A =
WHWT. Let Ay = H (the Hessenberg matrix) and
U, = W (the transformation matrix).

for k=1,2,. ..

Choose shift oy,

— Factorize Ap = QiR
Multiply Ag+1 = RipQxk

— Accumulate Ugy1 = UpQx

e The new Ay4q is still an orthogonal similarity trans-
formation of Ay:

A1 = ReQrtorl = (QF (Ax—01])Qrtor] = QF ArQr

e Common choices for shifts are:

— Newton shift: The last diagonal element (is the
eigenvalues of the last 1 x 1 block).

— Wilkinson shift: An eigenvalue of the last 2 x 2
sub-matrix. (An advantage with this method is
that it can give complex shifts, even with a real
matrix).

Iterative eigenvalue algorithms

The power method x; = Axi_1 has slow convergence
if the largest eigenvalue is not well isolated. It is also
not efficient - it throws away all computed ;.

o If we save all the vectors we get the Krylov subspace

Kk(A,.ro) = {.1‘0, A,CCQ, A2ZEQ, ey Ak_ll‘o}

The vectors in the Krylov space will be less and less
independent. The Arnoldi algorithm will make an or-
thonormal basis from them.

Start with the first vector. From the next, remove all
dependency on the previous (one step from the Gram-
Schmidt algorithm). Then normalize the remaining
vector and put it as the next basis vector.

Arnoldi algorithm

e Start with g1 = x/||z||2
— for k=1,2,...
— u=Ag
— for j=1,2,.. . k.
hjk = q]Hu

u=1u—qjh;

hit1k = [|ull2

— Qi1 = U/ hpt1k

Lanczos algorithm

e Start with g1 = x/||z||2
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— for k=1,2,...

— u=Aqr — qk—1Bk-1
— ar = qflu

- U =u— Qo

= B = |lull2

— Qrr1 = u/Br

e The Lanczos uses much less operations per iteration
than Arnoldi.

e Lanczos only saves the last two vectors.
e Thus Lanczos manages much bigger problems.

e However, orthogonality gets lost after a while. Re-
orthogonalization is as costly as Arnoldi.

Spectral transformation

e A standard practice to find eigenvalue to a large ma-
trix is to apply a Krylov space algorithm, Lanczos or
Arnoldi, to a shift invert spectral transformation:

C = (A—0oB)™'B, with eigenvalues 6; = 1/(\;—0)



