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Preface

This booklet contains some topics in numerical linear algebra that I consider
useful for any student interested in Scientific Computation but which is not
included in the common beginners course.

For a more comprehensive presentation the reader is referred to the text
book

James W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997

In these notes, I give the emphasis to algorithm descriptions and some proofs
that give a good understanding of how the algorithms behave in a practical
situation. For the very fundamental perturbation theory, you need to consult the
book. The Demmel book also gives a wealth of information on inplementation
aspects collected during the long LAPACK effort.

In Chapter 1, a few introductory examples of direct methods for linear sys-
tems are given, together with a short introduction to perturbation theory and
error analysis.

Chapter 2 introduces direct methods for sparse matrices. There is a large
class of matrices for which these algorithms are the most effective way of solving
a linear system. The theory is interesting, it is in the border area between
Numerical Analysis and Computing Science.

Chapter 3 treats the Singular Value Decomposition. I could not resist giving
my students access to the proof introduced in the Golub Van Loan text book.
The importance of the SVD in data analysis and signal processing, motivates
giving it a prominent position in any Scientific Computing curriculum.

In Chapter 4, eigenvalues are discussed. A proof of the important Schur
theorem is given, together with an introduction to the Lanczos and Arnoldi
algorithms for iterative solution of large sparse eigenvalues.

Finally in Chapter 5, I give an introduction to iterative algorithms for linear
systems. I think time is ripe to put Krylov space based algorithms in the center
here, who on earth does still use the SOR method discussed in most text books?

This is an augmented first edition. I hope to make up a more comprehensive
and connected text later, but yet, remember my own motto “When it comes to
text books, the first edition is always the best!”

Stockholm September 7, 2007

Axel Ruhe



Chapter 1

Linear Systems

In this chapter we consider linear systems of equations

Ax = b (1.1)

The matrix A is small enough to be stored in the main memory of your machine.
This may be rather large on the computers of today, say order n up to a few
thousands. We discuss algorithms based on Gaussian elimination, this gives a
direct algorithm that computes a solution x in a finite number of arithmetic
operations.

1.1 Gaussian elimination

The Gaussian elimination algorithm does n− 1 major steps that transform the
matrix A into an upper triangular matrix U . A system with an upper triangular
matrix can be solved by back substitution.

In major step i a multiple of the ith row is subtracted from the rows below
i so that the i th column is made into zeros in these rows.

for i = 1 to n− 1
for j = i+ 1 to n
lj,i = aj,i/ai,i

for k = i+ 1 to n
aj,k = aj,k − lj,iai,k

end k
end j

end i

We express this in matrix language. Start with A(1) = A. In step i, premul-
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4 CHAPTER 1. LINEAR SYSTEMS

tiply by an elimination matrix,

Li = I + lieTi =




1
1

li+1,i 1
...

. . .
ln,i 1




Its inverse is obtained by a sign change,

L−1
i = I − lieTi

A(i+1) = L−1
i A(i)

We continue until

A(n) = L−1
n−1A

(n−1) = · · · = L−1
n−1 . . . L

−1
1 A(1)

The final matrix A(n) is upper triangular and we have gotten a LU factorization

A = LU with L = L1L2 . . . Ln−1 and U = A(n)

This is the basic algorithm description. To make a practical code we have
to observe:

Pivoting The diagonal element ai,i, the pivot element has to be nonzero. We
can exchange row i and a later row j such that aj,i is nonzero. Most often
we move up the element with largest absolute value. This makes sure
that all multipliers |lj,i| ≤ 1. If the matrix A is nonsingular, it is always
possible to find a nonzero aj,i in the lower part of the ith column.

In matrix language we get

PA = LU , where P = Pn−1 . . . P1 with Pi giving the ith row exchange

The interchanges have to be determined in each step i but we will get the
same factors as if we factored a matrix PA where the rows are permuted
before the elimination.

Storage We store the multipliers lj,i in the same place as the elements aj,i that
are put to zero.

Operation count In each major step i we do n − i divisions and then we
update (n− i)2 elements with a multiplication followed by a subtraction.
Summing up we get

n−1∑
i=1

(
(n− i)Div + (n− i)2(Add + Mul)

)
=
n3

3
(A+M) +O(n2)

In the second equality, we have used that sums of powers behave like
integrals. We use the common notation O(np) for all terms of degree p or
lower. For large orders n the leading term dominates.
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Execution order There are several ways of reordering the arithmetic opera-
tions, we may nest the for i, j and k statements in any order. The ijk
ordering given above is natural, when you compute by hand and write
rows. On a computer, it is important to keep memory references local, to
take advantage of cache memory. In Fortran the matrices are stored by
columns and then the innermost loop should keep in the same column, use
ikj or kij. We also distinguish between inner product and outer product
formulations, the algorithm above gives a row oriented outer product for-
mulation. The innermost loop over j and k updates the southeast block
by an outer product between the column l(i + 1 : n, i) of multipliers and
the row a(i, i+ 1 : n). The order kij gives an inner product formulation,
where the inner product of the jth row and the kth column is subtracted
from the element aj,k.

1.2 Solving a linear system

We solve the linear system Ax = b by the following algorithm

Algorithm Factor and solve

1. Factorize PA = LU by Gaussian elimination.

2. Permute the right hand side b′ = Pb

3. Forward substitution b′′ = L−1b′

4. Back substitution x = U−1b′′

End.

The forward and backward substitution steps need n2 additions and multi-
plications.

1.3 A numerical example

Let us see what happens when we do Gaussian elimination on

A =



16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1




The first pivot is 16 which is already the largest, we get multipliers and
update the rest of the matrix and get

A(2) =




16 2 3 13
0.3125 10.375 9.0625 3.9375
0.5625 5.875 4.3125 4.6875
0.25 13.5 14.25 −2.25



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Note that the first row is unchanged and that the first column contains the
multipliers lj,1.

In the second step, we use the second pivot 10.375, put multipliers in the
second column and update the third and fourth row and column. The first two
rows are left unchanged. We get:

A(3) =




16 2 3 13
0.3125 10.375 9.0625 3.9375
0.5625 0.56627 −0.81928 2.4578
0.25 1.3012 2.4578 −7.3735




In the third and final step, the pivot is −0.81928, and we update and get:

A(4) =




16 2 3 13
0.3125 10.375 9.0625 3.9375
0.5625 0.56627 −0.81928 2.4578
0.25 1.3012 −3 −2.6645e− 015




Note that the last element is tiny A4,4 = −2.6645e−015. The matrix is actually
singular, but rounding errors give rise to a small element. It is like the machine
epsilon, scaled by the size of the matrix elements.

We now get the lower triangular L and the upper triangular U as:

L =




1 0 0 0
0.3125 1 0 0
0.5625 0.56627 1 0
0.25 1.3012 −3 1


 and U =



16 2 3 13
0 10.375 9.0625 3.9375
0 0 −0.81928 2.4578
0 0 0 −2.6645e− 015




This was the result without pivoting. In the built in Matlab lu factorization,
row pivoting is used, let us follow that, to see the difference.

The first step is the same. In the second step we interchange the second and
fourth rows and get,

A(3) =




16 2 3 13
0.25 13.5 14.25 −2.25
0.3125 0.76852 −1.8889 5.6667
0.5625 0.43519 −1.8889 5.6667




Note that also the multipliers are permuted. In the last step, no interchange is
needed, and we get:

A(4) =




16 2 3 13
0.25 13.5 14.25 −2.25
0.3125 0.76852 −1.8889 5.6667
0.5625 0.43519 1 3.5527e− 015




Note that also now we have a tiny number in the bottom, the matrix is still
singular.
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1.4 Error analysis for linear systems

The error analysis of a numerical computation is most often divided into two
phases, perturbation theory and rounding error analysis. In the perturbation
theory, it is investigated how much the result of a computation is influenced
by perturbations in the data. Such a perturbation bound depends on the data
but is not dependent on how the actual computation has been done. It is also
useful for all kinds of errors, not only those coming from the computation,
but also uncertainties in the measurements that gave the data for an applied
computation. The rounding error analysis is most often done as a backward
rounding error analysis, saying that the result of the actual computation is the
same as the result of an exact computation starting on a perturbed set of data.
A bound on these perturbations can then be inserted in a perturbation theorem
to bound the error in the computed result.

It may sound awkward to first go backward and then forward, but this was
one of the early successes in the history of numerical computation. Before the
computer age, in the 1930ies, one tried with a forward analysis, assuming some
uncertainty in the data. For each operation one got a bigger uncertainty in
the results and found that the numerical solution of large systems should be an
risky endeavor. It was J H Wilkinson in England that showed that one could
prove that the computed solution was an exact solution of a problem that was
close to the original one in most cases much closer, and that the solution of
the perturbed problem might be far off but most often was quite close to the
original. Now systems with thousands of equations are solved reliably.

We first introduce vector and matrix norms, a way of measuring the size of a
multidimensional entity. This is a special case of the rich mathematical theory
of normed linear spaces. We then give a few perturbation results for the solution
of a linear system. Last we indicate how large the rounding errors are that are
introduced while we factorize a matrix with Gaussian elimination. Very similar
methods can be used to analyze other computations, like solving a system and
matrix vector multiplications. It is assumed that the reader is acquainted to
how the IEEE standard floating point arithmetic works.

1.4.1 Norms of vectors and matrices

A vector norm is a measure of the length of a vector x. It is a nonnegative
number ‖x‖ that satisfies the following three conditions:

‖x‖ ≥ 0 ‖x‖ = 0 only when x = 0 (1.2)
‖αx‖ = |α|‖x‖ for scalar α (1.3)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ Triangle inequality (1.4)

The most common norms are the p norms defined by

‖x‖p =
{

(
∑

i |xi|p)1/p for 1 ≤ p <∞
maxi |xi| for p = ∞
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and among those p = 2, the least squares or Euclidean norm and p = ∞, the
maximum or Chebyshev norm.

A matrix norm is likewize a measure of the size of the matrix, regarded as a
vector in Rmn, satisfying (1.2)(1.3)(1.4), but now we are also interested in the
matrix as an operator describing a linear mapping. We say that matrix norms
are consistent if

‖AB‖ ≤ ‖A‖‖B‖ (1.5)

for any pair of matrices that can be multiplied. Note that the matrices may be
of different dimension, m× n and n× p, giving a product of dimension m× p,
so we have three different norms.

We can let two vector norms define a matrix norm, defined by

‖A‖ ≡ max
x�=0

‖Ax‖
‖x‖

the operator norm or induced or subordinate matrix norm. It satisfies the
conditions (1.2)(1.3)(1.4) as well as (1.5). Moreover the unit matrix I has

‖I‖ = 1

for any operator norm.

1.4.2 Perturbations of linear systems

Now look at a linear system Ax = b (1.1), and assume that the data A and b
have been perturbed into A+ δA and b+ δb. Then the solution will be changed
into x+ δx, and now we want to bound the perturbation δx. ’

We see that x+ δx is the solution of the linear system

(A+ δA)(x+ δx) = b+ δb (1.6)

provided that the perturbation δA does not make the matrix singular.
Subtract the original system (1.1) from this and get,

(A+ δA)(x+ δx) = b+ δb
Ax = b

(A+ δA)δx+ δAx = δb

δx = (A+ δA)−1(δb− δAx) (1.7)

In the simplest case, when there is no perturbation on the matrix A, we see
that δx = A−1δb and its norm can be bounded as

‖δx‖ ≤ ‖A−1‖‖δb‖

where any pair of consistent matrix and vector norms can be used.
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This is good, but we are better served by a bound that is invariant under
scaling. We can obtain such a bound on the relative perturbation, by noting
that

‖b‖ ≤ ‖A‖‖x‖
Multiply those inequalities together and divide with the product ‖x‖‖b‖ and get

‖δx‖
‖x‖ ≤ ‖A−1‖‖A‖‖δb‖‖b‖ (1.8)

a bound for the relative perturbation in the solution x as a multiple of a bound
for the relative pertubation to the right hand side b.

The factor multiplying the perturbation

κ(A) = ‖A−1‖‖A‖

is called the condition number of the matrix. It is always larger than one,
κ(A) ≥ 1 (Why?). For an operator norm, it is the quotient between the largest
possible expansion and the smallest possible contraction of a vector under the
mapping given by the matrix A,

κ(A) =
maxx(‖Ax‖/‖x‖)
minx(‖Ax‖/‖x‖)

If the matrix is singular, some vectors are mapped to zero, and the condition
number κ(A) is infinite.

It is a little more complicated to find a bound on the perturbation to the
solution when the matrix is perturbed. It can then happen that the perturbation
makes the matrix singular. We take norms in the original expression (1.7) for
δx getting

‖δx‖ ≤ ‖(A+ δA)−1‖(‖δb‖+ ‖δA‖‖x‖) (1.9)

We now need to bound the norm of the inverse of the perturbed matrix and
then we express it as

(A+ δA)−1 = A−1(I + δAA−1)−1

and bound its norm by

‖(A+ δA)−1‖ ≤ ‖A−1‖(1− ‖δA‖‖A−1‖)−1 . (1.10)

Here we have used the fact that

‖(I +X)−1‖ ≤ 1
1− ‖X‖

whenever ‖X‖ < 1. This is proved by taking the expansion

(I +X)(I −X +X2 + . . . Xk−1) = I − (−1)kXk
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and noting that the the second term in the right hand side tends to the limit
zero for growing k whenever ‖X‖ < 1. The series in the second factor of the
left hand side is majorized by the geometric series

1 + ‖X‖+ ‖X‖2 + · · · = 1/(1− ‖X‖)
We get the bound (1.10) by setting X = δAA−1.

We are now ready to get the expression for the relative perturbation to x by
dividing both sides of the inequality (1.9) with ‖x‖ and noting that ‖A‖‖x‖ ≥
‖b‖ we get

‖δx‖
‖x‖ ≤ ‖A−1‖

1− ‖δA‖‖A−1‖ (
‖δb‖
‖x‖ + ‖δA‖)

≤ κ(A)

1− κ(A)‖δA‖
‖A‖

(
‖δb‖
‖b‖ +

‖δA‖
‖A‖ ) (1.11)

Note the difference to the case (1.8) when only the right hand side b was
perturbed. The factor in front is larger than the condition number κ(A) =
‖A‖‖A−1‖ and there is a perturbation δA of size ‖δA‖ = 1/‖A‖ to the matrix
A that makes the denominator zero and the perturbed matrix singular.

1.4.3 Rounding errors in Gaussian elimination

Let us now follow the Gaussian elimination process in detail, to see how rounding
errors lead us to compute a solution to a perturbed problem and find a bound on
the size of this perturbation. It is assumed that we use standard IEEE floating
point arithmetic so that the result of a floating point operation, where 
 stands
for any one of +−×/, satisfies

fl(a
 b) = (a
 b)(1 + δ) |δ| ≤ ε (1.12)

One operation can always be done with a forward relative error bounded by
machine accuracy ε = 2−52 ≈ 2.204× 10−16. If we do more than one operation,
all we can show is that we get a correct result for perturbed data. Here we need
the bound,

fl

(
d∑

i=1

xiyi

)
=

d∑
i=1

xiyi(1 + δi) with |δi| ≤ dε

We follow the Gaussian elimination for each matrix element in the algorithm.
The elements ajk in the upper triangle j ≤ k are modified the first j − 1 steps
and are then left as ujk

ujk = ajk −
j−1∑
i=1

ljiuik

Those in the lower triangle j > k are modified in the first k − 1 steps and are
then divided by the pivot element ukk to become ljk,

ljk =
ajk −∑k−1

i=1 ljiuik

ukk
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Replacing all the arithmetic operations in the computation of ujk by the floating
point operations (1.12) we get

ujk =

(
ajk −

j−1∑
i=1

ljiuik(1 + δi)

)
(1 + δ′)

with |δi| ≤ (j−1)ε bound the backward error in the scalar product and |δ′| ≤ ε.
Then we get an expression for

ajk = 1
1+δ′ujkljj +

∑j−1
i=1 ljiuik(1 + δi)

=
∑j

i=1 ljiuik +
∑j

i=1 ljiuikδi
≡ ∑j

i=1 ljiuik + ejk

where

|ejk| =
∣∣∣∣∣

j∑
i=1

ljiuikδi

∣∣∣∣∣ ≤
j∑

i=1

|lji||uik|(j − 1)ε = (j − 1)ε(|L||U |)jk

where we have assumed that δ is small enough to make |1/(1+δ′)−1| ≤ ε. Here
the absolute value notation is used to denote the matrix of absolute values,

(|A|)jk = |ajk|

A similar analysis for the lower triangle j > k gives

ajk ≡
k∑

i=1

ljiuik + ejk

with
|ejk| ≤ (k − 1)ε(|L||U |)jk

This way we have got bounds on the absolute values of all elements of the
difference E. It is worth noting that this bound is dependent on the size of the
elements of L and U . If we perform Gaussian elimination with partial pivoting,
the most common variant, all elements of the lower triangular L are smaller
than one. The elements of U may be larger, actually they may be as large
as 2n−1 max |ajk|. This kind of growth is very rare and has happened only
on specially constructed examples, so in most cases it is ignored. One good
precaution is to keep track on the element growth.
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Chapter 2

Direct methods for Sparse
Matrices

Many matrices coming from practical applications have only few nonzero el-
ements, they are sparse. This happens to matrices emanating from network
problems, linear programming bases, input output models in economy, and fi-
nite difference and finite element discretizations of partial differential equations.

There are quite good direct algorithms for linear systems that take sparsity
into account, and some of them are implemented in Matlab. We limit our
discussion to symmetric positive definite matrices. Most of the common appli-
cations involve symmetric positive definite matrices, take e g stiffness matrices
in mechanics and conductivity in electric DC networks. While factorizing posi-
tive definite matrices, it is not necessary to pivot for stability. Any elimination
order is equally good, as long as symmetry is preserved.

2.1 Graphs and matrices

A graph G consistes of one set V of vertices, and one set E of edges, connecting
pairs of vertices,

G = (V,E) where V = {1, 2, . . . , n}, E ⊂ V × V . (2.1)

To each graph with n nodes, there corresponds an n × n matrix A, where
ai,j �= 0 if and only if (i, j) ∈ E. We can think of an arrow from vertex i to
vertex j. We let an undirected graph correspond to a symmetric matrix, in that
case both of ai,j and aj,i are nonzero if one of them is. Many applied problems
have a graph structure in bottom, think of networks and finite difference and
-element approximations.

It the matrix A is given, we may construct a graph G(A) where edges cor-
respond to nonzero elements of the matrix.
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We may renumber the nodes of a graph. This does not change its adjacency
properties, so all renumberings of the same graph are in a certain respect equiv-
alent. A renumbering of the graph corresponds to a simultaneous permutation
of rows and columns of the matrix

A′ = PTAP (2.2)

the multiplication from the left with PT exchanges the rows, and the multipli-
cation with P from the right exchanges columns of the matrix A.

2.2 Gaussian elimination of graphs

Now look at the linear system

Ax = b

where the matrix A is sparse. If we perform Gaussian elimination LU factoriza-
tion, the factors L and U will in general be less sparse than the original matrix
A, we say that we get fill in of nonzero elements. Let us see when this happens!
In the innermost loop of Gaussian elimination, we compute

a′i,j = ai,j − (ai,k/ak,k)ak,j (2.3)

on element ai,j in step k when variable k is eliminated. Fill in occurs whenever
ai,j = 0 (not yet filled) and both ai,k and ak,j are different form zero (filled).
We assume that the pivot element ak,k is nonzero, this is always the case when
A is symmetric positive definite.

Let us see what this means in graph terms. When we eliminate one node k
we will have to introduce a fill in edge (i, j) if there is a path from node i to
node j via node k.

We get a very intuitive picture of Gaussian elimination of a graph. Eliminate
the nodes one by one. When one node k is eliminated, add new edges between
any two nodes that are connected to node k and does not yet have an edge
between them.

Now different variants of sparse Gaussian elimination correspond to different
ways to number the nodes. There is no way to find an optimal ordering, without
testing them all. We say that the problem of finding an order of a graph that
has minimum fill in is NP-complete. We will have to use a reasonably effective
heuristic, to find an order that we can use in practical cases.

2.3 Choice of algorithm

We will discuss three classes of heuristical reordering algorithms, Variable Band,
Nested Dissection and Minimum Degree.
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2.3.1 Variable band: RCM algorithm

Variable band algorithms are very easy to implement and they are still common
in Structural Engineering under the name skyline algorithm. They follow from
the observation that there is fill in in column j above the main diagonal only
below the first filled element ak,j (2.3). Elements are filled only below the
skyline of the top nonzero elements above the diagonal. A good variable band
algorithm is one that makes a small skyline, and that happens when the band
width of the matrix is small. This in turn happens if the graph is of an oblong
shape and numbered from one end to the other.

There is an automatic way of finding a reasonably good variable band or-
dering, the reversed Cuthill Mc Kee algorithm (RCM). It has two phases, first
it tries to find a pair of peripheral nodes, then it traverses the graph along
the diameter between these hopefully peripheral nodes. Finally the ordering is
reversed, that explains the peculiar name.

A path between two nodes i and j is a sequence of edges going from node i to
node j, say (i, i1), (i1, i2), . . . , (ih, j) all belonging to the edge set E. There may
be several paths between a certain pair of nodes, take one shortest path, then
the distance between node i and node j is the number of edges in a shortest
path connecting them. A diameter is a shortest path of maximal length, and
we say that a node is peripheral if it is one end of a diameter.

One heuristic, that often finds a diameter, is the Gibbs Poole Stockmeyer
algorithm. It builds up a level structure in the graph in the following way. Take
one node, let it be level 0. Number its neighbors, i. e. nodes that have an edge
to it. This is level 1. When we have levels 0, . . . , k, number all neighbors to
nodes from level k, that are not yet numbered, to make up level k + 1. Finally
all nodes are numbered (provided that the graph is connected). Those at the
last level h are at a distance h from the starting node.

Now repeat the same procedure, starting at one node in the last level h. We
get a new level structure that has at least h levels (Why?). Start again at the
new last level and repeat the procedure until the number of levels no longer
increases. This happens most often rather soon. Now the first and last nodes
of the final numbering are likely to be peripheral and their shortest path be a
diameter. We call them pseudo-peripheral to avoid claiming too much.

The Cuthill Mc Kee ordering is now taken from one of these last longest
level structures. Number the nodes level by level, enumerating neighbors inside
the levels. The matrix will get a cigar like shape, open in the end. Reverse the
ordering, and get it open in the beginning.

2.3.2 Nested Dissection

This algorithm, also called substructuring, is built around finding a separating
set of nodes dividing the graph into two parts, substructures. Eliminate the
nodes inside each of the substructures first and take the nodes of the separating



16 CHAPTER 2. DIRECT METHODS FOR SPARSE MATRICES

set last. It is best illustrated by the block matrix,

A =


A1,1 0 A1,3

0 A2,2 A2,3

A3,1 A3,2 A3,3


 (2.4)

Here blocks 1 and 2 are the substructures and 3 the separating set of nodes.
When Gaussian elimination is performed on A, the zero blocks will remain zero.

We can repeat the division of the subgraphs recursively, and get a kind of
self similar look of the matrices.

2.3.3 Minimum Degree

This is a greedy algorithm, to use a term from Computer Science. We under-
stood from the discussion about Gauss elimination of graphs, that the largest
possible fill in, when eliminating node k first is (rk − 1)× (ck − 1), the product
of the number of nondiagonal nonzeros in row k and the number of nonzeros in
column k. For a symmetric matrix this is the square of the number of edges
meeting node k, this number is called the degree of node k. Eliminating one
node with minimum degree, will give the smallest possible fill in after the first
elimination step. After eliminating the first node, we have to update the graph
with the fill in, and take a minimum degree node of the updated graph. Continue
until all nodes are eliminated!

The surprising fact is that this very simple idea of a greedy algorithm most
often is very good. It also gives rise to orderings that bear a resemblance to the
much more elaborate nested dissection strategy.

2.4 Examples

Let us illustrate these algorithms on a very simple example, a finite difference
Laplacian on a square grid. For a unit square and step h = 0.25 we get a 3× 3
grid

G= [ 1 4 7
2 5 8
3 6 9]

with n = 9 nodes ordered in columns. The matrix is

A= [ 4 -1 0 -1 0 0 0 0 0
-1 4 -1 0 -1 0 0 0 0
0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0
0 -1 0 -1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4]
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Figure 2.1: Laplace n = 9. Dots stand for original elements, circles fill in above
the main diagonal at different orderings.

We plot the nonzero pattern as points in the upper left of figure 2.1. We do
Cholesky (Gaussian elimination) and mark the filled elements of the uppertri-
angular factor as circles. In the first elimination step k = 1 there is fill in at
position 2, 4, see (2.3). In the next step k = 2 this recently filled element causes
a fill in in position 3, 4 while the original element at 2, 5 causes a fill in 3, 5. We
show plots of RCM, MMD and ND reorderings in the rest of figure 2.1

This very small matrix is included mainly to make it possible to follow what
happens. Take a slightly larger, n = 25! Here the RCM reordering of the grid
is

G= [ 1 2 4 7 11
3 5 8 12 16
6 9 13 17 20
10 14 18 21 23
15 19 22 24 25 ]
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Figure 2.2: Laplace n = 25, fill in at different orderings given by Matlab.

and we see in the upper right picture in figure 2.2, the characteristic cigar shape
of the RCM reordering of the matrix.

In the bottom plots in figure 2.2, we see how the similarity between the
MMD and ND orderings starts to show up. That is slightly surprising, Minimum
Degree is a greedy, bottom up type of algorithm, while Nested Dissection is a
recursive top down.

ND does not come out at its best compared to RCM, a refined version of
ND gives the reordering

G= [ 1 3 21 13 11
2 4 22 14 12
9 10 23 20 19
6 8 24 18 16
5 7 25 17 15 ]

Here we see how the corners are taken first, then the separators between two
corner blocks and finally the large separator in the middle. Look at the plot in
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Figure 2.3: Laplace n = 25, optimal nested dissection.

figure 2.3! First comes a 4 × 4 block, then another 4 × 4 and then the 2 node
separator. Then the same pattern is repeated and last come the 5 nodes in the
second order separator. The fill in is postponed until the latest possible columns,
and we see that the bottom 7 × 7 block is nearly full after the factorization is
finished.

In practical codes for large matrices, one switches to full matrix code at that
stage when a substantial part of the elements are filled. A full matrix code will
then be faster, the sparse code needs quite a bit of bookkeeping and indirect
addressing.

Let us take a still larger example, a 31 × 31 grid that gives n = 969. We
plot the matrix and its Cholesky factor after MMD reorder in figure 2.4. The
Cholesky factor now has 11023 filled elements, there is a fill in of 8198 new
elements above the diagonal. This is still quite a bit better than the original
ordering for which the Cholesky factor has 29821 filled elements, the RCM
ordering where it has 21266, and ND where it has 15032.
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Figure 2.4: Laplace n = 969, Minimum Degree. Left before factorization, right
upper triangular factor. Fill in upper triangle is 8198 = 11023− (4681+ 969)/2
elements.



Chapter 3

The Singular Value
Decomposition

3.1 Overdetermined systems, least squares

One of the most common computations in practice is fitting a mathematical
model to a set of observations. Let us say that we observe the activity of a
sample that is undergoing radioactive decay. We have measured a series of n
intensities (ti, yi), i = 1, . . . , n. The intensity is modeled by

y =
p∑

j=1

αj exp(−λjt)

where, αj ≥ 0, is the amount and λj ≥ 0 is the decay rate of element j. Inserting
our observations in the model we need to minimize the norm of the residual

r =



y1
y2
...
yn


−



exp(−λ1t1) . . . exp(−λpt1)
exp(−λ1t2) . . . exp(−λpt2)

...
...

exp(−λ1tn) . . . exp(−λptn)





α1

...
αp




r = y −A(λ)x
The residual vector r is the difference between the observation vector y and the
product of the design matrix A and the parameter vector x. Most often n ,the
number of observations, is considerably larger than p, the number of elements
in the model, we have an overdetermined system. The masses αj occur linearly
in the model, while the decay rates λj occur nonlinearly. In the simplest case,
the decay rates are known, we have to determine only the linear parameters αj .

Our task is now to compute parameters αj and λj so that the residual
r is minimized in an appropriate norm. The choice of norm depends on the
situation. If the errors in the model are caused by many independent sources,

21
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we choose the Euclidean norm, ‖r‖2 = (rT r)1/2 = (
∑
r2i )

1/2. This is the most
common situation in experimental or observational science, it is also the case
that is simplest to handle numerically, we talk about a least squares problem.

In some cases other norms are used. If we want to minimize the maximal
residual, we use the maximum norm, ‖r‖∞ = maxi |ri|. This is the situa-
tion when we need to approximate an elementary function by a polynomial or
rational function in a computer. There are also cases when the sum norm,
‖r‖1 =

∑ |ri|, is of interest, this happens when there are outliers in the set of
observations, i. e. that some of the observations are far away from the model.

Let us now consider a linear least squares problem

min
x

‖r‖2 = ‖y −Ax‖2

We see that we should choose the p vector x so that the distance between the
image Ax and the observation vector y is as small as possible. This happens
when the difference r = y−Ax, the residual, is perpendicular to the range space
R(A) of all possible Ax for the given matrix A. Especially the residual r should
be orthogonal to each of the columns of the matrix A, that is

AT r = AT (y −Ax) = AT y −ATAx = 0

which is a p × p system with a symmetric matrix ATA that x should satisfy.
These are the normal equations.

If the design matrixA has linearly independent columns, the normal equation
matrix ATA is nonsingular, and one can compute a solution to the linear least
squares problem by solving the normal equations.

The normal equations do not give the most accurate method to solve a
linear least squares problem, we get better algorithms by observing that we
may transform the matrix A itself by orthogonal transformations. Replacing
the matrix A by QTA does not change the norm ‖r‖2 if

‖QT r‖2 = ((QT r)TQT r)1/2 = (rTQQT r)1/2 = ‖r‖2

which happens if QQT = I, that is if the transformation Q is orthogonal.
We may compute an orthogonal matrix Q that transforms the rectangular

matrix A into upper triangular form R as a product of p elementary reflections
Q = H1H2 . . . Hp each Hk putting zeros into column k of A.

Let us not discuss this algorithm in detail yet, we will get an even more
powerful algorithm by using the singular value decomposition SVD.

3.2 The SVD theorem

Theorem 1 Any m× n matrix A can be factorized

A = UΣV T = UrΣrrV
T
r (3.1)
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where

U =
[
Ur, Um−r

]
is m×m orthogonal(unitary), left singular vectors

V =
[
Vr, Vn−r

]
is n× n orthogonal(unitary), right singular vectors

Σ =
[
Σrr 0
0 0

]
is m× n with

Σrr = diag(σk), r × r diagonal with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, singular values

Proof: We prove the theorem by finding the first singular value and its pair of
left and right singular vectors and reduce the matrix to one with one row and
column less. The same procedure is then repeated.

Take a unit length vector x for which the maximum in the definition of the
Euclidean matrix norm is attained,

‖A‖2 = max
‖Ax‖2

‖x‖2
(3.2)

Set σy = Ax, where σ = ‖Ax‖2 = ‖A‖2 is a normalization factor chosen
to make y a unit length vector. We can now form two orthogonal matrices,
V1 = [x,Xn−1] and U1 = [y, Ym−1], by adding orthogonal columns to the vectors
x and y.

Multiply the matrix A with these and get,

UT
1 AV1 = UT

1

[
Ax AXn−1

]
= UT

1

[
σy AXn−1

]
=
[
yT

Y T
m−1

] [
σy AXn−1

]
=
[
σ wT

0 B

]
= A1 (3.3)

The zeros in the first column of A1 are a consequence of that U1 is chosen
to be orthogonal. Its first column is then orthogonal to the remaining columns
Y T

m−1y = 0.
Now let us prove that also the row vector wT in the upper right hand corner

of A1 is zero. We know that the orthogonal transformation (3.3) does not change
the norm of A, ‖A1‖2 = ‖A‖2 = σ. Let A1 operate on the vector z = (σ, wT )T

and note that

A1z =
[
σ wT

0 B

] [
σ
w

]
=
[
σ2 + wTw
Bw

]
which means that

σ = ‖A‖2 = ‖A1‖2 ≥ ‖A1z‖2

‖z‖2
≥ ((σ2 + wTw)2 + ‖Bw‖2

2)
1/2

(σ2 + wTw)1/2
≥ (σ2+wTw)1/2 ≥ σ .

This means that all these inequalities are equalities, which can be true only if
w = 0.

We have now proved that

UT
1 AV1 =

[
σ 0
0 B

]
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and can continue to apply the same reduction on the lower right block B getting

UT
2 BV2 =

[
σ2 0
0 C

]

or after multiplying together

[
1 0
0 U2

]T

UT
1 AV1

[
1 0
0 V2

]
=


σ1 0 0
0 σ2 0
0 0 C


 .

We have now written σ1 for the number σ used previously. Note that σ1 ≥ σ2

because σ was chosen as the maximum of ‖Ax‖ over all unit vectors (3.2), while
σ2 is the maximum over vectors restricted to the range of Xm−1 of vectors
orthogonal to the original x.

We may repeat the same procedure until, after r reductions, we finally get
a zero bottom right block and have

UTAV =




σ1 0 . . . . . . 0
0 σ2 . . . . . . 0
...

. . .
0 σr 0

0 0
. . . 0




where the orthogonal matrix U is the product U1U2 . . . Ur with appropriate
rows and columns from the unit matrices added in the beginning of each factor
Uk, k = 2, . . . , r. Likewize V is V1V2 . . . Vr. This ends the proof.

This proof is not actually constructive. It depends on the existence of a
maximizing vector x for the quotient ‖Ax‖2/‖x‖2, (3.2).

The traditional way to prove the SVD is to use the relation between eigen-
values and singular values. Then the singular values are the square roots of the
eigenvalues of the symmetric and positive semidefinite matrix ATA. The right
singular vectors V are the eigenvectors of ATA. The left singular vectors U are
the eigenvectors of AAT which has the same nonzero eigenvalues as ATA.

Note that we have made no assumptions on the number of rows m and
columns n . We use to talk about overdetermined systems when m > n and
underdetermined if m < n.

The number r ≤ min(m,n) is called the rank of the matrix and is a very
important number. It gives the dimensions of the range space of A,

R(A) = {y = Ax, x ∈ Rn} ⊂ Rm

as well as the range space of AT

R(AT ) = {x = AT y, y ∈ Rm} ⊂ Rn .
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The leading r columns Ur of U give an orthonormal basis of R(A) and those Vr

of V an orthonormal basis of R(AT ) the range of its transpose. The remaining
columns Vn−r of V form a basis of the nullspace of A

N(A) = {x ∈ Rn, Ax = 0} ⊂ Rn

and those of U , Um−r form a basis of the nullspace of AT

N(AT ) = {y ∈ Rm, AT y = 0} ⊂ Rm .

These are the four fundamental subspaces of the linear mapping given by
the matrix A,

Rn = R(AT )⊕N(A) = span(Vr)⊕ span(Vn−r)

Rm = R(A)⊕N(AT ) = span(Ur)⊕ span(Um−r)

If r = n, the nullspace of A is zero and A has linearly independent columns,
we say that A has full column rank. If r = m, the nullspace of AT is zero and
now A has linearly independent rows, full row rank. A nonsingular matrix is
a square matrix with full rank in both directions, r = m = n. If the rank r
is smaller r < min(m,n) we say that the matrix is rank deficient. A singular
matrix is a square matrix that is rank deficient, r < m = n.

3.3 Using SVD to solve linear least squares prob-
lems

With the singular value decomposition available, it is an easy matter to find
solutions to any linear least squares problem,

min
x

‖Ax− b‖2 .

Use the SVD (3.1) and the orthogonal invariance of the Euclidean vector norm
to observe that,

‖Ax− b‖2 = ‖UΣV Tx− b‖2 = ‖Σ(V Tx)− UT b‖2

that gives the algorithm

Algorithm Solve Least Squares Problem

1. Compute the SVD of the matrix, A = UΣV T .

2. Multiply the right hand side UT b =
[
b′r
b′m−r

]
.

3. Divide y = (V T
r x) = Σ−1

rr b
′
r.



26 CHAPTER 3. THE SINGULAR VALUE DECOMPOSITION

4. Multiply x = Vry.

End.

We note that the residual is

r = b−Ax = Um−rb
′
m−r ∈ N(A)

and is of minimal norm ‖r‖ = ‖b′m−r‖ which can be computed from the bottom
part of the transformed right hand side b′ = UT b. There is no way of making the
residual smaller. If the columns are linearly dependent, r < n there are n − r
last elements in the transformed solution vector y = V x that can be chosen
arbitrarily without changing the norm of the residual. Our choice is to take
them as zero, it gives the solution of minimum norm.

We notice that the solution x is a linear function of the right hand side b
and we can write it as

x = A+b = VrΣ−1
rr U

T
r b

We call the matrix A+ the pseudoinverse of A. It is the inverse of A regarded as
a one to one mapping from R(AT ) to R(A), the two r-dimensional range spaces
spanned by Vr and Ur.

3.4 Finding low rank approximations

We may write the SVD (3.1) as a sum of rank one matrices,

A =UrΣrrV
T
r

=σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r

=σ1E1 + σ2E2 + · · ·+ σrEr

The interesting thing is now that the sum of the leading k ≤ r terms gives the
best rank k approximation to A measured in the Euclidean, or more properly
Frobenius, norm.

We call this Principal component analysis. The first principal component
σ1E1 contains the main variation of the data material collected in the matrix
A. This property of the SVD is widely used in signal processing, data analysis
and psychometrics.

3.5 Computing the SVD

Algorithms to compute the SVD make use of the close relation between the SVD
and the symmetric eigenvalue problems of the matrices ATA and AAT . These
matrices are not formed explicitly, instead one multiplies the original matrix
A by different orthogonal matrices from left and right, which corresponds to
orthogonal similarities on AAT and ATA respectively.



Chapter 4

Eigenvalues

In many scientific and engineering contexts one needs to solve an algebraic
eigenvalue problem,

(A− λB)x = 0 , (4.1)
for eigenvalues λk and eigenvectors xk. Its solution is used as the first step
on the way from a static to a dynamic description of a system of interacting
entities. Think of a network of electric components or a mechanical construction
of masses and springs! Small perturbations of a static, equilibrium, position will
be formed as eigenvectors and move as the eigenvalues indicate.

The foremost mathematical modeling tool is the Laplace transform, where we
map a description in time and space to one involving decay rates and oscillation
frequences, these are the real and imaginary parts of the eigenvalues. In this
realm we use eigenvalues to get the solution of a linear system of ordinary
differential equations,

ẋ = Ax , x(0) = a ,
over time as a linear combination of eigensolutions,

x(t) = Σkαkxke
λkt .

Complex eigenvalues correspond to oscillating solutions,

exp(a+ ib)t = exp(at)(cos(bt) + i sin(bt)) .

4.1 Transformation algorithms

For matrices of moderate size, essentially those that can be stored as a full array
in the computer, the standard way to compute eigenvalues is to apply similarity
transformations, until we reach a form of the matrix where it is easy to read off
the eigenvalues. If there are n linearly independent eigenvectors, x1, x2, . . . , xn,
building up the nonsingular matrix X, then

AX = XD, giving A = XDX−1, where D = diag(λk) (4.2)

and in this case we say that A is diagonalizable.

27
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4.1.1 Theory

Not all matrices are diagonalizable, but we can transform any square matrix to
triangular form by means of an unitary (or orthogonal) similarity. This is the
consequence of the Schur theorem,

Theorem 2 (Schur theorem) Every square matrix A can be transformed

A = UTUH

where U is unitary and T is upper triangular with eigenvalues in the diagonal
in any chosen order.

Proof: The proof is very similar to the proof of the SVD theorem 1. We
find an eigenvale eigenvector pair, transform the first row and column to the
form wanted, and repeat the procedure on a matrix of smaller size.

Take λ1 an eigenvalue and x an eigenvector of unit norm, ‖x‖2 = 1. Add
n− 1 column vectors Xn−1 to make a unitary matrix, U1 = [x,Xn−1].

Now

Ax = xλ1

AU1 = [xλ1, AXn−1]

UH
1 AU1 =

[
λ1 A′

1,n−1

0 A′
n−1,n−1

]

The zeros in the lower left are there because U is unitary, its first column x is
orthogonal to the remaining columns in Xn−1.

We have now made the first step, repeat the same procedure on the lower
right block A′

n−1,n−1 giving λ2 and U2, and continue down to the right, until we
have an upper triangular matrix T and a unitary U = U1U2 . . . Un−1, with parts
of the unit matrix added to each Uk, to make it n× n. This ends the proof.

Note that, unlike Theorem 1 there is no specified order between the eigenval-
ues. Any of the eigenvalues can be chosen as λ1, and algorithms for eigenvalue
computation may give their results in surprising orders.

There is no way to transform the matrix into triangular form by a finite
number of elementary transformations. Any practical transformation algorithm
is divided into two phases, one initial reduction, that zeroes out all subdiagonal
elements except one diagonal, and one final iterative phase where the remaining
subdiagonal elements are made smaller and smaller in magnitude.

4.1.2 Initial reduction: Householder algorithm

We use a finite systematic algorithm to make an orthogonal (unitary in the
complex case) similarity transformation into Hessenberg form. A Hessenberg
matrix is upper triangular with one nonzero subdiagonal. If the original matrix
A is Hermitian (real symmetric), the Hessenberg matrix H will be symmetric
and tridiagonal.
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In the real nonsymmetric case we get the factorization,

A =WHWT

where the result H is of Hessenberg form and the orthogonal transformation
matrix W is a product W = H1H2 . . . Hn−2 of Householder transformations or
elementary reflections.

Elementary reflections: An elementary reflection is a matrix H = I−2uuT ,
where the vector u is of unit norm ‖u‖2 = 1. An elementary reflection is both
orthogonal and symmetric. To check symmetry, note that,

(I − 2uuT )T = IT − 2(uT )TuT = I − 2uuT ,

using the facts that IT = I, (AB)T = BTAT and (AT )T = A for all pairs of
matrices A and B of the appropriate orders. To verify orthogonality, multiply

(I − 2uuT )(I − 2uuT ) = I − 2uuT − 2uuT + 4uuTuuT = I ,

since uuTuuT = u(uTu)uT = uuT when the vector u is of unit Euclidean length,
uTu = 1.

Progress of transformations: We now choose n− 2 elementary reflections
Hk, k = 1, . . . , n−2, where Hk makes all elements except the k+1 first elements
in column k of A equal to zero. The vector uk in Hk is zero in the leading k
positions.

We start with the full matrix

A(1) =




x x x . . . x
x x x . . . x
x x x . . . x
...

...
...

...
x x x . . . x




Multiply by H1 from the left and get A(1.5) = H1A
(1), where the first column

has zeros below position 2,

A(1.5) =




x x x . . . x
r y y . . . y
0 y y . . . y

0
...

...
...

0 y y . . . y




We note that the first row is unchanged. Complete the similarity transformation
by multiplying from the right, giving A(2) = A(1.5) ×H1 = H1A

(1)H1, now with
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the first column untouched

A(2) =




x z z . . . z
r z z . . . z
0 z z . . . z

0
...

...
...

0 z z . . . z




This was the transformation with the first Householder matrix, H1. The
next H2 does not change the first two rows when multiplied from the left. This
means that the zeros introduced during the first transformation will remain
zero, and the vector u2 can be chosen to annihilate all elements in the second
column except the 3 first,

A(2.5) =




x z z . . . z
r z z . . . z
0 r w . . . w

0
...

...
...

0 0 w . . . w




The transformation from the right

A(3) = A(2.5)H2 = H2A
(2)H2 = H2H1A

(1)H1H2

does not destroy any of the zeros in the first two columns. Continue with the
transformations H3 etc until Hn−2 gives the product W = H1H2 . . . Hn−2. The
matrix A will have the form,

A(n−1) =




x z v . . . v
r z v . . . v
0 r v . . . v

. . .
...

0 r v




.

A numerical example Let us look at an example. Take the matrix,

A = magic(4) =



16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1




It is of order n = 4, and we perform n− 2 = 2 reflections on it.
The first reflection is determined by the last 3 elements of the first column.

It is

H1 = I − 2u1u
T
1 =



1

−0.45268 −0.81482 −0.36214
−0.81482 0.54296 −0.20313
−0.36214 −0.20313 0.90972



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Note that it is both symmetric and orthogonal and equal to the unit matrix in
the first row and column. We multiply A from the left and get

A(1.5) = H1A =




16 2 3 13
−11.0454 −15.7532 −14.8479 −13.7614

−8.0061 −7.9374 −0.2062
7.3306 8.8056 −4.425




The first row is unchanged, the norms of the columns are also left invariant.
Then multiply from the right and get,

A(2) = H1AH1 =




16 −8.0577 −2.6415 10.4927
−11.0454 24.2131 7.5696 −3.7981

10.1665 2.2558 4.3241
−8.8909 −0.29322 −8.4689




Now the three last columns are affected and the row norms are left invariant.
This concludes the first orthogonal similarity. Apply the next reflection H2

from left and right and get,

A(3) =WTAW =




16 −8.0577 8.8958 6.1595
−11.0454 24.2131 −8.1984 2.1241

−13.5058 −4.3894 −7.8918
−3.2744 −1.8237




which is of Hessenberg form.
The final transformation matrix is,

W = H1H2 =



1

−0.45268 0.37496 −0.80901
−0.81482 −0.54243 0.20453
−0.36214 0.75178 0.55107




It is orthogonal but not symmetric.

Complexity In this illustration, we have written the transformation matrices
H1 and H2 as full matrices. In any serious implementation, one takes advantage
of that Hi is an elementary transformation matrix, that is a rank 1 modification
of the unit matrix, and computes each column H1a as

H1a = (I − 2uuT )a = A− 2uuTa = a− u(2uTa)

first evaluating the scalar product in parentheses uTa, this needs n additions
and multiplications. Then multiply by 2, this is one multiplication, and finally
subtract a multiple of the u vector from the a vector, this is what in linear alge-
bra slang is called an axpy operation, needing n additions and multiplications.
In all we need 2n flops, if we count one addition plus one multiplication as one
flop, floating point operation. This is considerably less than the n2 flops needed
to multiply a full matrix with a vector.
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Also in the matrix matrix operation A′ = HiA one saves a factor n in opera-
tion count, it takes 2n2 flops. The complete reduction needs O(n3) flops, which
is of the same order of magnitude as the Gaussian elimination factorization for
solving a linear system or as a matrix matrix multiply, C = AB.

4.1.3 Final iteration: QR algorithm

The first phase of the transformation algorithm was finite, and needed n − 2
steps to get the matrix into Hessenberg form. Now in the second phase, the
Hessenberg form will be retained, while we will make the subdiagonal elements
smaller and smaller. The standard algorithm is the QR algorithm, which does
the similarities by doing a sequence of QR factorizations of shifted matrices.

The basic QR algorithm is

Algorithm QR, unshifted

Start A1 = H (Hessenberg matrix), U1 =W (transformation).
For k = 1, . . . , do

1. Factorize Ak = QkRk giving Qk, orthogonal, and Rk, upper triangular.

2. Multiply Ak+1 = RkQk

3. Accumulate Uk+1 = UkQk

End.

We see that
Ak+1 = RkQk = QT

kAkQk

an orthogonal similarity. The accumulation makes the final

Ak+1 = UT
k AUk

where A is the original matrix that we started the whole process on.
This simple QR algorithm with no shifts will converge, but very slowly.

We will get a faster convergence if we introduce shifts. This depends on the
observation that if Ak is singular, one diagonal element in Rk will be zero. The
determinant of Rk is namely the product of its diagonal elements. Most often it
is the last element rnn = 0. Then the whole last row of Rk is zero, and when we
multiply from the right with Qk in the second step, the entire last row of Ak+1

will be zero. We then know that we have a zero eigenvalue and that the rest of
the eigenvalues are eigenvalues of the leading (n− 1)× (n− 1) submatrix. Then
we can continue to compute eigenvalues of this smaller matrix, this is called
deflation.

In practice we do not know any eigenvalue, we have to choose an approx-
imation as shift. In LAPACK and other mathematical software, one takes an
eigenvalue of the last 2× 2 submatrix, this Wilkinson shift is easy to compute,
and has the advantage that one may get complex shifts for a real matrix. A
nonsymmetric real matrix most often has complex eigenvalues.
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Let us formulate a simple variant of the shifted algorithm.

Algorithm QR,with explicit shifts

Start A1 = H (Hessenberg matrix), U1 =W (transformation).
For k = 1, . . . , do

1. Choose shift σk

2. Factorize Ak − σkI = QkRk (Shifted matrix)

3. Multiply Ak+1 = RkQk + σkI (Restore shift)

4. Accumulate Uk+1 = UkQk

End.

The new Ak+1 is still an orthogonal similarity of Ak

Ak+1 = RkQk + σkI = (QT
k (Ak − σkI))Qk + σkI = QT

kAkQk

Numerical example, continued We will continue with the 4 × 4 example
and use the simple Newton shift. The Newton shift is the last diagonal element,
eigenvalue of the last 1× 1 matrix.

We start the QR algorithm on the Hessenberg matrix,

A1 =




16 −8.0577 8.8958 6.1595
−11.0454 24.2131 −8.1984 2.1241

−13.5058 −4.3894 −7.8918
−3.2744 −1.8237




The Newton shift σ1 = a(1)4,4 = −1.8237 which gives,

A1 − σ1I =




17.8237 −8.0577 8.8958 6.1595
−11.0454 26.0368 −8.1984 2.1241

−13.5058 −2.5657 −7.8918
−3.2744




=



−0.85002 −0.42038 −0.22937 −0.2194
0.52676 −0.67837 −0.37013 −0.35405

0.60257 −0.57671 −0.55165
−0.69123 0.72263





−20.9687 20.5642 −11.8801 −4.1168

−22.4134 0.27583 −8.7857
4.7371 2.3522

2.25




Note that the orthogonal factor Q is of Hessenberg form, it is actually computed
as a product of n − 1 elementary rotations. The upper triangular R factor is
already quite heavy at the top, even if the bottom element is not yet really
small.
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Multiply and add back the shift and get,

A2 =




26.8323 −12.2938 6.8951 0.89857
−11.8064 13.547 14.2098 1.4345

2.8545 −6.1815 −0.91342
−1.5553 −0.19778




We take the new shift σ2 = a(2)4,4 = −0.19778 and get the next

R2 =



−29.4961 16.7676 −0.63089 −0.24928

−8.1885 −12.7059 −1.2508
11.2182 1.4258

0.1996




Now the bottom element is quite small which will make the last subdiagonal
element even smaller in

A3 =



33.5439 −3.1162 1.849 0.0071313
−3.2776 11.2646 9.3767 0.049679

−3.9106 −10.8084 −0.045647
−0.027673 −0.00010351




The next shift is very small, we actually have one zero eigenvalue. In the next
R3 we will get the last element r4,4 = 0.0001 and the matrix

A4 =




33.952 −1.16 0.57038 1.9624e− 008
−1.1269 6.6039 15.7545 4.5179e− 007

2.3502 −6.5559 −2.4933e− 007
−4.113e− 007 −1.3074e− 014




which is ready to deflate.
We now take the shift from the leading 3 × 3 as σ = a

(4)
3,3 = −6.5559. The

next transformed matrix is

A5 =




33.9945 −0.36846 −0.20014 −7.0527e− 009
−0.37072 9.2971 −12.925 −4.0113e− 007

0.48995 −9.2915 −3.2514e− 007
−4.113e− 007 −1.3074e− 014




Now we look at the element in position (3, 2) and see that it is getting smaller.
Another step on the leading 3× 3 gives

A6 =




33.999 −0.1592 0.085271 3.6171e− 009
−0.15922 8.952 13.4072 4.096e− 007

−0.0089776 −8.951 −3.1446e− 007
−4.113e− 007 −1.3074e− 014




and now the interesting subdiagonal element is substantially smaller. It can
actually be proved that this element is converging to zero quadratically.
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Let us do a last step on the 3× 3 and get

A7 =




33.9998 −0.066365 −0.035536 −2.0987e− 009
−0.066365 8.9445 −13.4164 −4.0977e− 007

3.3717e− 006 −8.9443 −3.1425e− 007
−4.113e− 007 −1.3074e− 014




Now we are ready in all essential. We know that the leading eigenvalue is λ = 34,
the common row and column sum of the magic square. (Why?)

4.1.4 Computing eigenvectors

After the QR algorithm with deflation, Ak is in triangular Schur form T and
its eigenvalues are in the diagonal. In the symmetric (Hermitian) case, it is
diagonal and the transformation matrix WU will have eigenvectors as columns.

In the nonsymmetric case we solve a triangular linear system by back sub-
stitution for each eigenvector.

(T − λkI)x = 0

Note that λk is one diagonal element of T ,


λ1 − λk t1,2 . . . t1,k . . . t1,n

λ2 − λk . . . t2,k . . . t2,n

. . .
...

...

0
...

. . .
...

0 λn − λk







x1

x2

...
xk

...
xn



= 0

This system is singular and we can choose the kth element xk = 1. Then the first
k−1 elements are computed by back substitution on the upper (k−1)× (k−1)
submatrix Tk−1,k−1 − λkI. The trailing n− k elements are chosen as zeros.

The back substitution operation involves divisions with differences λi − λk,
and if two eigenvalues have the same value it may fail. In that case, we say that
the matrix is defective and does not have a full set of n linearly independent
eigenvectors. Not all matrices with multiple eigenvalues are defective, if the
relevant part of T is diagonal, we have a full set of eigenvectors.

Numerical example, conclusion The resulting triangular matrix in our
example is

T =



34 0 0 0

8.9443 13.4164 0
−8.9443 0

0




The first eigenvector is chosen as x1 = e1 = (1, 0, 0, 0)T , the next as x2 = e2
since the leading 2 × 2 is diagonal. Then the third vector is obtained by back
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substitution in the leading 2× 2 which is just a division by λ3 −λ2 = −17.8885,
giving the second element x2,3 = t(2, 3)/(λ3 −λ2) = −0.75, and the eigenvector
x3 = (0,−0.75, 1, 0)T . The fourth vector x4 = e4 since now we have a block of
zeros again.

Normally we normalize the eigenvectors to unit Euclidean length, this gives
the eigenvector matrix,

X =



1 0 0 0
0 1 −0.6 0
0 0 0.8 0
0 0 0 1




to the triangular T and

WUX =



0.5 0.82361 −0.37639 −0.22361
0.5 −0.42361 −0.023607 −0.67082
0.5 −0.023607 −0.42361 0.67082
0.5 −0.37639 0.82361 0.22361




gives eigenvectors of the original matrix A. Note that the eigenvectors of a
nonsymmetric matrix do not form an orthogonal matrix, but that in this case
the first and last columns are orthogonal to each other.

4.2 Iterative eigenvalue algorithms

Iterative algorithms compute a sequence of vectors that hopefully converges to
an eigenvector. The most basic iteration is the power method, where the x0 is
a starting guess and then a sequence xk is computed by

xk = Axk−1 (4.3)

After many iterations xk will tend to an eigenvector, corresponding to the eigen-
value λ1 that is largest in absolute value, provided there is only one such eigen-
value.

The power method is very slow to converge, most often the absolutely largest
λ1 is not very much larger than the others in absoute value. It is also rather
wasteful, we just forget the vectors xi already computed, and keep looking at
the newest one xk.

4.2.1 Arnoldi algorithm

We will get more interesting algorithms, if we save all vectors in the sequence (4.3),
and get the Krylov subspace

Kk(A, x0) = {x0, Ax0, . . . , A
k−1x0} (4.4)

(Here the brackets {. . . } mean linear span of the columns given)
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The vectors in the basis (4.4) will be close to linearly dependent, if we
just compute them by the power method recursion (4.3). We may compute an
orthonormal basis of the Krylov space (4.4) by means of the Arnoldi algorithm:

Algorithm Arnoldi

Start with q1 = x/‖x‖2 where x is a starting vector.
For k = 1, 2, . . .

1. u = Aqk

2. For j = 1, . . . , k

(1) hj,k = qHj u

(2) u = u− qjhj,k

3. hk+1,k = ‖u‖2

4. qk+1 = u/hk+1,k

End.

Let us follow what happens. In the first step in the loop, we multiply with
the matrix A, which brings us one step forward in the Krylov sequence (4.4).
The inner loop in step 2 then makes the computed vector u orthogonal to each
of the previous vectors qj . This is one step of the Modified Gram Schmidt
algorithm for orthogonalization. In step 3, the vector u is ortogonal to all the
previous qj , j = 1, . . . , k. It is normalized to unit length and put in as the next
basis vector qk+1.

Eliminate the intermediate vector u used in the algorithm, and get the basic
recursion

Aqk = q1h1,k + q2h2,k + · · ·+ qkhk,k+ hk+1,kqk+1

= Qkhk+ hk+1,kqk+1

AQk = QkHk,k+ hk+1,kqk+1e
T
k (4.5)

In the last line, we have added the basic recursions from previous steps, and got
a matrix Hk,k of Hessenberg form,

Hk,k =




h1,1 h1,2 . . . h1,k

h2,1 h2,2 . . . h2,k

0 h3,2 . . . h3,k

. . .
...

0 0 hk,k−1 hk,k




The residual term to the right is orthogonal to the Krylov space (4.4), and we
see that

Hk,k = QH
k AQk (4.6)
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the restriction of the operator A to the Krylov space spanned by Qk. Its eigen-
values approximate those of A, they are called Ritz values.

Let us take an eigenpair (θ, s) of Hk,k

Hk,ks = sθ (4.7)

then the vector
yk = Qks (4.8)

is an approximate eigenvector of the original matrix A. Compute its residual

Ayk − ykθ = AQks−Qksθ (From definition(4.8))

= (QkHk,k + hk+1,kqk+1e
T
k )s−Qksθ (From basic recursion (4.5))

= hk+1,kqk+1e
T
k s (s is eigenvector (4.7))

The residual is in the direction of qk+1, the next basis vector, which is orthogonal
to the Krylov space (4.4) spanned by Qk, we say that we have a Galerkin
approximation. We note that ‖qk+1‖2 = 1 so the norm of the residual is

‖Ayk − ykθ‖2 = |hk+1,ksk| (4.9)

the product of the next subdiagonal element and the last element of the eigen-
vector of Hk,k. If this is very small, we have an indication of convergence of θ
towards one eigenvalue λ of A.

This relation (4.9) is the basis for how Arnoldi is used as an iterative eigen-
value algorithm for matrices that are large and sparse, too large to perform
similarity transformations. The original matrix A is accessed only to perform
matrix vector operations in step 1 of Algorithm Arnoldi, and any type of
sparsity structure can be used. We need to compute and store the vectors qk,
but the computation of Ritz values (4.7) and estimate of residual norms (4.9)
can be performed using only the small k × k matrix Hk,k. We can repeat this
computation at regular intervals, until we reach a value of k, for which the resid-
ual estimate (4.9) is small enough. Then we have to compute the Ritz vector
y (4.8), which is a major operation, since it involves k long n vectors. In normal
practice, the number of steps k is much smaller than the order of the matrix n,
say that k = 20− 50 while n = 10000.

The Arnoldi algorithm is getting very heavy computationally if a large num-
ber of steps k are needed. The orthogonalization in step 2 of Algorithm

Arnoldi will involve the order of nk flops in step k and for large k it will be
very time consuming and start to dominate.

4.2.2 Lanczos algorithm

If the matrix A is real symmetric or complex Hermitian, then the Hessenberg
matrix Hk,k (4.6) is real symmetric and tridiagonal. To see this, note that its
conjugate transpose, HH

k,k = (QH
k AQk)H = QH

k A
H(QH

k )H = QH
k AQk = Hk,k

which is following from AH = A and (QH)H = Q. Moreover the subdiagonal
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element hk+1,k is computed as a norm in Algorithm Arnoldi step 3, and the
diagonal element is always real for a Hermitian matrix. We can replace Hk,k by
the tridiagonal matrix

Tk =




α1 β1 0
β1 α2 β2

0 β2 α3

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk




(4.10)

The orthogonalization in step 2 of Algorithm Arnoldi will be replaced by
two vector subtractions and we get the Lanczos algorithm:

Algorithm Lanczos

Start with q1 = x/‖x‖2 where x is a starting vector.
For k = 1, 2, . . .

1. u = Aqk − qk−1βk−1

2. αk = qHk u

3. u = u− qkαk

4. βk = ‖u‖2

5. qk+1 = u/βk

End.

In the step 1 we assume that q0 = 0 and β0 = 0 the first time k = 1. For
later steps k > 1, we already know the orthogonalization coefficient βk−1 from
symmetry.

The Lanczos algorithm needs only a few scalar products and vector additions,
together with the matrix vector multiplication, in each step k, so it can be run
for substantially more steps k than Arnoldi. Moreover we need not save all the
basis vectors qk, only the last two vectors need to be available, which makes it
possible to use Lanczos for considerably larger matrices than Arnoldi.

However, orthogonality of the basis vectors qk depends on an assumption on
symmetry, and gets lost after some time. It was proved by Christopher Paige in
his thesis 1970, that this happens precisely when the first eigenvalue converges.
The safest way to avoid trouble with this is to reorthogonalize the vectors, but
then we need to do as much work as we do with Arnoldi.
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4.2.3 Spectral Transformation

A standard practice to find eigenvalues of large matrix pencils (4.1) is to ap-
ply a Krylov space algorithm, Lanczos or Arnoldi, to a shift invert spectral
transformation,

C = (A− σB)−1B with eigenvalues θj = 1/(λj − σ) . (4.11)

It will compute eigenvalues λj close to the shift point σ in the complex plane[1].
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Figure 4.1: Shift invert spectral transformation θ = λ−µ
λ−σSlightly different from

the one described in text!



Chapter 5

Linear systems: Iterative
algorithms

Now we return to algorithms for numerical solution of a linear system

Ax = b (5.1)

and seek an iteration that generates a sequence of vectors, x1, x2, . . . , xk, · · · →
x∗, where Ax∗ = b the solution of the system (5.1)

5.1 Krylov sequence methods

We can look in the Krylov space spanned by the vectors obtained by successively
premultiplying a starting vector x0 by the matrix A,

Kk(A, x0) = {x0, Ax0, . . . , A
k−1x0} (5.2)

In this section let us assume that the matrix A is symmetric positive definite.
This happens in many important practical cases. Let us choose the normalized
right hand side b of the system (5.1) as starting vector q1 = b/‖b‖2 and compute
an orthogonal basis Qk of the Krylov space (5.2) by means of the Lanczos
algorithm

AQk = QkTk + βkqk+1e
T
k (5.3)

with a tridiagonal matrix Tk (4.10).
Let us take an approximate solution xk = Qkzk from the Krylov space (5.2).

If we choose zk = T−1
k e1‖b‖2, we get a residual

rk =b−Axk

=Qke1‖b‖2 −AQkzk (b is starting vector)

=Qke1‖b‖2 −QkTkzk − βkqk+1e
T
k zk (basic recursion (5.3))

=Qk(e1‖b‖2 − Tkzk)− qk+1βkζk

=− qk+1βkζk (by choice of zk)

41
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The residual rk is orthogonal to the Krylov space (5.2) and its norm is getting
small if the last component ζk of the vector zk is small. The vector zk is
proportional to the first column of the inverse T−1.

5.2 Conjugate gradient algorithm

We can derive a short recursion to compute the entire sequence of approximate
solutions xk without needing to factorize Tk anew each step k. We assumed
that the matrix A was symmetric positive definite. Then that is true also for
the tridiagonals Tk, let us write its Gaussian factorization,

Tk = LkDkL
T
k =



1
l1 1

. . . . . .
lk−1 1





d1

. . .
dk





1 l1

. . . . . .
1 lk−1

1



(5.4)

Now the approximation at step k is

xk = QkT
−1
k e1‖b‖2

= Qk(L−T
k D−1

k L−1
k )e1‖b‖2

= (QkL
−T
k )(D−1

k L−1
k e1‖b‖2)

= Pk yk

defining the new basis Pk and the vector yk of length k. The basis Pk is A-
conjugate which means that

PT
k APk = (QkL

−T
k )TA(QkL

−T
k )

= L−1(QT
kAQk)L−T

k

= L−1TkL
−T
k

= L−1(LkDkL
T
k )L

−T
k = Dk

a diagonal matrix, this is what has given this algorithm its name. The vectors
pk are search directions leading from xk−1 to xk because

xk = Pkyk = [Pk−1 pk]
[
yk−1

ηk

]
= Pk−1yk−1 + pkηk = xk−1 + pkηk (5.5)

which gives the recursion to update xk−1.
Now we need a recursion for the pk vectors. Note that Pk = QkL

−T
k which

means that Qk = PkL
T
k and note that the last column of LT

k has only the two
last elements nonzero giving,

pk = qk − lk−1pk−1 (5.6)
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We started this discussion with computing the orthogonal basis Qk by means of
the Lanczos algorithm. We saw that the residuals rk had the directions of the
qk. It is now possible to update rk directly by the recursion

rk = rk−1 −Apkηk (5.7)

which is a direct consequence of the update of xk (5.5) and the fact that rk =
b − Axk so that rk − rk−1 = −A(xk − xk−1) = −Apkηk. We can then dispose
of the actual computation of Qk and Tk in the Lanczos algorithm and get the
coefficients ηk and lk−1 of the updates directly from the vectors pk, conjugate
search directions, and rk orthogonal residuals.

Gathering all this together, we get:

Algorithm Conjugate Gradient

Start with solution x0 = 0, residual r0 = b, search p1 = b.
For k = 1, 2, . . .

1. z = Apk

2. νk = (rTk−1rk−1)/(pT
k z)

3. xk = xk−1 + νkpk (Next iterate (5.5))

4. rk = rk−1 − νkz (Recursive residual (5.7))

5. µk+1 = (rTk rk)/(r
T
k−1rk−1)

6. pk+1 = rk + µk+1pk (New search (5.6))

End.

5.3 Preconditioning

We noted that the conjugate algorithm is actually Lanczos applied to the eigen-
value problem

(A− λI)x = 0

We remember that convergence depends on the distribution of eigenvalues, if
they are close together towards the ends of the spectrum, convergence will be
slow. If we find a matrix M that is a good approximation to the matrix A but
is cheap to invert, or more properly solve systems, we can device an algorithm
for the preconditioned system

M−1Ax =M−1b

The preconditioned algorithm can be derived from the Lanzcos algorithm
applied to the generalized eigenvalue problem

(A− λM)x = 0
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Inserting the multiplication with M−1 at the appropriate place, and using M
scalar products, we get:

Algorithm Preconditioned Conjugate Gradient

Start with solution x0 = 0, residual r0 = b, search p1 =M−1b, y =M−1r0.
For k = 1, 2, . . .

1. z = Apk

2. νk = (yT
k−1rk−1)/(pT

k z) (M-scalar product)

3. xk = xk−1 + νkpk (Next iterate (5.5))

4. rk = rk−1 − νkz (Recursive residual (5.7))

5. yk =M−1rk (Preconditioner)

6. µk+1 = (yT
k rk)/(y

T
k−1rk−1) (M-scalar product)

7. pk+1 = yk + µk+1pk (New preconditioned search (5.6))

End.

There is a trade off when choosing preconditioner M . A very crude M adds
little to the work of each iteration, but needs many iterations to converge. A
very accurate M , on the other hand, will need few iterations to converge but
will need quite some time to factorize and the operation with the factors M−1r
will be heavy in each iteration.

The simplest choice is to take the diagonal elements of A, diagonal precondi-
tioning. Another simple minded approach is to do a Cholesky factorization and
stop after a limited amount of fill in has occurred. One talks about ICCG(p)
for an Incomplete Cholesky, filling p diagonals, adding to those alreday full. If
we have an incomplete factorization

A = LLT +R =M +R

where R contains those elements we did not eliminate, the operation with the
preconditioning is simply

y =M−1r = L−T (L−1r)

effected by a sparse forward substitution followed by a sparse back substitution,
as indicated by the parentheses. We may also let a drop tolerance determine
which elements to leave in R, this variant is implemented in Matlab .

If we know something more about the matrix, there are more sophisticated
variants. If A is a finite difference or finite element approximation to a par-
tial differential equation, we may use a coarse level approximation to give M ,
Multigrid. That will be discussed in connection with algorithms for Partial Dif-
ferential Equations. M may also be the exact solution over a simple region, for
instance a rectangle.
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