
KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2012.

DN2222
Applied Numerical Methods

- part 2:
Numerical Linear Algebra

Aim of the Course
Basic understanding of important details in applied nu-

merical linear algebra.

• Linear systems of equations, Ax = b (where A is n×n).

• Linear least squares problems,
Ax = b (where A is m× n, m > n).

• Eigenvalue problems.
(Given A find x and λ such that Ax = λx)

• Singular Value Decomposition

3 programming paradigms:

• Library routines (BLAS, EISPACK, LAPACK, NAG)

• Programming environment (Matlab, Mathematica)

• Templates

Already seen (parts) of this in the earlier courses.

Why do it (again)?

Reason is two-fold:

• Give an understanding of the functioning of the soft-
ware. What can be expected from the code?

• To be able to select a good software for your applica-
tion.

Simple example: Fibonacci numbers

• 1st Fibonacci number is 0

• 2nd Fibonacci number is 1

• All later Fibonacci numbers are the sum of the two
immediately previous numbers

function f=fib(n);

if n==1;

f=0;

elseif n==2;

f=1;

else

f=fib(n-1)+fib(n-2);

end;

function f=fib(n); function f=fibv(n);

1



KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2012.

if n==1; v=zeros(1,n);

f=0; v(2)=1;

elseif n==2; for i=3:n;

f=1; v(i)=v(i-1)+v(i-2);

else end;

f=fib(n-1)+fib(n-2); f=v(n);

end;

Solving Ax = b

• Matrix factorization - the matrix A provides the key
information for the solution process.

• Perturbation Theory and Condition numbers -
often given data has limited accuracy - then what to
expect from the result?

• Round off errors - An algorithm is always performed
on a computer with finite arithmetics (floating point
numbers). How does this effect the result?

Mathematically equivalent

f(x) =
√

(x+ 1/x)−√
x− 1/(

√
x)3

g(x) =
1/x

√

(x+ 1/x) +
√
x
− 1/(

√
x)3

x f(x) g(x)
1.0000e+ 01 −1.5851e− 02 −1.5851e− 02
1.0000e+ 02 −5.0001e− 04 −5.0001e− 04
1.0000e+ 03 −1.5811e− 05 −1.5811e− 05
1.0000e+ 04 −5.0000e− 07 −5.0000e− 07
1.0000e+ 05 −1.5811e− 08 −1.5811e− 08
1.0000e+ 06 −5.0001e− 10 −5.0000e− 10
1.0000e+ 07 −1.5707e− 11 −1.5811e− 11
1.0000e+ 08 −1.0000e− 12 −5.0000e− 13
1.0000e+ 09 −3.1623e− 14 −1.5811e− 14

Solving Ax = b (cont.)

• Speed - How long time does the code need to run?
How much work and what kind of work is needed?

• Engineering Numerical Software
- Ease of use
- Reliability
- Robustness
- Speed

2



KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2012.

Simple integral

∫ b

a

123e−(4567(1−cos(x)))2)dx

i = quad(’fkn’,a,b)

a b i
−π π 4.6662e+ 00

−π + 0.1 π + 0.1 4.8015e− 225
−π + 0.1 π 4.0447e− 13

π π + 0.1 0.0000e+ 00

Organizational Details

• 8 lectures, 7 scheduled lab help sessions

• Course Webpage:
http://www.csc.kth.se/utbildning/...

...kth/kurser/DN2222/nummet2-12

• Course Lecturer: Ninni Carlsund

• Course Assistant: Ashraful Kadir

Course Literature

• J W Demmel: Applied Numerical Linear Algebra
SIAM 1997.

• A Ruhe: Topics in Numerical Linear Algebra
KTH-CSC 2007.

• Some handouts (on the course web-page)

Course Requirements

• 3 lab assignments.

• 1 written examination (3 hours),
Monday December 10th, 14-17 o’clock.

Plan

F1 Introduction,

Foundations of Error Analysis.

(L1,D1.2-3)

F2 Error Analysis (cont.), Gaussian Elimination

(D2.1-4)

F3 Direct Methods for Sparse Matrices

(L2, D2.7)

F4 Linear Least Squares Method,

Singular Value Decomposition

(L3, D3.1,2,5)

F5 Singular Value Decomposition (cont),

Eigenvalues

(L4, D4)

F6 Eigenvalues (cont)

(L4, D4)

F7 Large Scale Problems: Iterative Methods

(L5, D6.6)

F8 Wrap-up

3



KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2012.

Sources of error
Answers from a numerical calculation are seldom exactly
correct. There are two sources of error.

• There may be errors in the input data. The input often
comes from measurements or previous calculations.

• There are errors caused by the algorithm itself, due to
approximations within the algorithm.

In order to estimate how these errors effect the calculated
answer, we need to understand how the solution changes
when the input is slightly changed/perturbed.

Perturbation theory and Condition Number

• Let f(x) be a real valued differentiable function.

• We want to compute f(x) but we do not have x exactly.
We are given z and δx knowing that z−δx ≤ x ≤ z+δx.

• The best we can do, without more information, is to
compute f(z) and try to bound the error |f(x)−f(z)|.

• Using linear approximation we get
|f(z)− f(x)| = |f(x+ δx)− f(x)| ∼ |δx| · |f ′(x)|.

• We call |f ′(x)| the absolute condition number

• To get an relative estimation we rewrite the expression:

|f(x+ δx)− f(x)|
|f(x)| ∼ |δx|

|x| · |f
′(x)| · |x|
|f(x)|

• The multiplier of |δx|/|x| is called the (relative) condi-
tion number.

κ =
|f ′(x)| · |x|

|f(x)|

Condition Number

• The condition number is all we need to tell us how
errors in input data will affect the computed answer.

• A problem is ill-conditioned if the condition number is
large.

• A problem is ill-posed if the condition number is infi-
nite.

• A problem is well-posed if the condition number is fi-
nite.

4



KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2012.

Roundoff error analysis

• When computing f(x) we get ŷ rather than mathemat-
ical y.

• Mathematically ŷ should be the result of f(x̂).

• |y − ŷ| is the forward error.

• |x− x̂| is the backward error.

• An algorithm is said to be backward stable if the back-
ward error is small for all x ( alg(x) = f(x+ δx)).

• Informally: a backward stable algorithm gives the ex-
act answer for a slightly wrong problem: alg(x) =
f(x+ δx).

• Showing backward stability requires knowledge of round-
off error during basic floating point operations of the
machine.

Analysing Speed

• We want to estimate the time a particular algorithm
will need before we implement it.

• Traditionally one counted flops.

• We will compare flops for all our algorithms.

• However today this might be misleading since modern
computers run parallel, but also need time to move
data inside the computer.

Floating Point Arithmetics - Scientific Notation

• In Scientific Notation a number is described by sign,
fraction, base and exponent: −.31416× 101.

• A floating point number is called normalized if the
leading digit of the fraction is non-zero.

• Computers usually use the base 2.

• In normalized binary floating point numbers the lead-
ing digit is always 1 and need not be stored explicitly,
giving space to store one more bit.

Storage

• Computers have historically had many different choices
of base and length.

• Now IEEE standard for binary numbers is most com-
mon.

• IEEE standard for single precision is 32 bits (1 sign, 8
exponent, 23 fraction).

• IEEE standard for double precision is 64 bits (1 sign,
11 exponent, 52 fraction).

5



KTH DN2222 Applied Numerical Methods - part 2. Ninni Carlsund, 2012.

IEEE Single Precision

• IEEE standard for single precision is 32 bits (1 sign, 8
exponent, 23 fraction).

• The number is stored as (−1)s · 2e−127 · (1 + f)

• The maximum relative representation error is
2−24 ≈ 6 · 10−8

• The underflow threshold is 2−126 ≈ 1 · 10−38

• The overflow threshold is 2128 ≈ 3 · 1038

IEEE Double Precision

• IEEE standard for double precision is 64 bits (1 sign,
11 exponent, 52 fraction).

• The number is stored as (−1)s · 2e−1023 · (1 + f)

• The maximum relative representation error is
2−53 ≈ 1 · 10−16

• The underflow threshold is 2−1022 ≈ 2 · 10−308

• The overflow threshold is 21024 ≈ 2 · 10308

Some review questions:

• Q2. When is a floating point number normalized?

• Q4. What is the overflow threshhold? What is its
approximate value in IEEE double precision?

• Q9. What are well-posed and ill-posed problems?

• Q10. What are well-conditioned problems?

• Q11. Why is well-conditioning necessary for obtaining
reliable results?

• Q7. How do you bound the rounding error when
computing a sum of three numbers, s = a+b+c?

• Q12. What are forward and backward stability?

Next time (Wednesday):

• Norms

• Gaussian Elimination

• Error Propagation

• Pivoting

/NC

6


