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Linear systems: Az =b
e If A is n x n and non-singular then 2 = A~'b uniquely.

o If Ais m xn and m < n the problem is underde-
termined (and thus usually have infinitely many solu-
tions).

e If Ais mxn and m > n the problem is overdetermined
and then normally have no solution. This is the topic
for today.

e We will try to find the “best approximate solution” to
the overdetermined system.

Example 3.1 Ruhe p21
Given m pairs of data points (t1,y1), ... (tm, Ym) from
a sample of radioactive decay. The intensity is modeled by
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e The residual, r, is the difference between the observa-
tion vector y and the product of the design or system
matrix A and the parameter vector x.

e The task at hand is to compute parameters o and A
such that the residual is minimized in an appropriate
norm.

e If the A are known and only the a need to be deter-
mined the system is linear, otherwise non-linear.

Choice of norm

e If the errors are independent we choose the Euclidian
norm ||7||2 = (rTr)t/2 = (300, 72)1/2. Tt is the most
common and we talk about the least squares method.
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e If we want to minimze the maximal residual we use
the infimum norm ||r||.c = max; |r;|. This is typical
for polynomial interpolation.

e Another choice is the 1-norm ||r||; = Y, |r;|. This is
typically used when avoidance of outliers is important.

Quiz

e Given the three data points x = (1,2,3) and y =
(2,3,5). Determine the optimal line if the norm is

chosen as
o [Irll2
o 7o
o [[rflx

Surveyers work

e The least squares method was invented by Gauss try-
ing to improve accuracy in the German surveyers and
astronomers measurement.

e In 1974-78 the US National Geodetic Survey updated
its database in the same manner - solving the biggest
least squares problem ever: about 6 million equations
and 400000 unknowns.

Solutions

e Normal equations. Fast but not very accurate. Ad-
equate when the condition number is small.

¢ QR decomposition. Twice the amount of work but
more accuarate. The standard method.

e SVD. Even more work but works even if A is not full
rank.

Normal equations

e To derive the normal equations we need to minimize

l[r]|2 =rTr = (b— Az)T (b — Ax)
o Leads to ATAz = ATb or x=(ATA)"1ATh

e Proof: Let 2/ = z + e then

||Az" — b]|3 = (Az'—b)T (A2’ —b) = (Ae+Az—b)T (Ae+Azx—b)

= (Ae)T(Ae) + (Az — b)T (Az — b) + 2(Ae)T (Az — b)

= || Ae|[3+[| Az — bl[3+2¢" (AT Ax—ATD) = || Ael[3+|| Az — bl[3

e This is equivalent to the Pythagorean theorem. The
solution is optimized when the residual is orthogonal
to the space spanned by the columns of A.
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e Since AT A is symmetric and positive definite we can
use Cholesky factorization. The cost for Cholesky is

+n® and the cost for obtaining AT A from A is n®m.

e Since m > n forming AT A dominates the cost!

QR Decomposition

e Thm 3.1 (Dpl07) Let A be m x n with m > n and
rank(A)=n. Then there exists a unique m x n orthog-
onal matrix Q (QTQ = I,,) and a unique n x n upper

triangular matrix R with positive diagonal elements
ri; > 0 such that A = QR.

e First proof uses Gram-Schmidt orthogonalization pro-
cess. If apply GS to the columns of A = [a1,a2,...a,
one gets a sequence of orthonormal vectors ¢; obtained
from a linear combination of a1 to a;.

e Unfortunately GS is numerically unstable in floating
point arithmetic when the columns of A are nearly de-
pendent.

e Modified Gram-Schmidt (MGS) is more stable but could
still end up with a @ which is far from orthogonal.

z=(ATA)TT AT
= (RTQ"QR)T'RTQ"
_ (RTR)ARTQTb
=R7'Q"b

e The cost for QR-decomposition is about 2n2m — %n?’

about twice the cost of normal equations if m >> n
and about the same if m = n.

Singular Value Decomposition
e SVD is used for many things, not only least squares.

e Thm 3.2 (Dpl09) Let A be an arbitrary m x n matrix
with m > n. Then we can write A = UXVT, where
U is an m x n such that UTU = I, Visan n x n
such that VIV = I, and ¥ = diag(o1,...,0,), where
o1 > 09+ > on > 0. The columns uy,...,u, of U
are called left singular vectors. The columns vy,...,v,
of V are called left singular vectors. The o; are called
singular values.

e Proof of Thm 3.2: We assume that SVD exists for an
(m—1) x (n—1) matrix and then prove it for an n x m.
SVD has a large number of properties:

e If A is symmetric, then o; = |\;| and v; = sign(\;)u;.

e The eigenvalues of ATA are o2. The right singular

vectors are the corresponding orthogonal eigenvectors.

e The eigenvalues of AAT are 0? and m — n zeroes. The
left singular vectors are the corresponding orthogonal
eigenvectors.
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e If A has full rank, the least squares solution of Az = b
isz=VE~lUTb.

o |[All2 = |oul.

e If A is square and non-singular then [|[A7![|;! = o,
and [|Al]||A7H ] = 2L

e Suppose that A is m x n and has rank n with m >
n, then AT = (ATA)71AT = R71QT = vE~1UT is
called the (Morse-Penrose) pseudo-inverse of A.

o If m < n then AT = AT(AAT)~1.

Rank Deficient least Squares Problems
e What happens if A is rank deficient (or nearly)?

e This occurs often, like signals in noisy data (Lab3),
digital image restoration or compression, etc.

e Rank deficient problems are very ill-conditioned.

e Making an ill-conditioned problem well-conditioned by
imposing extra conditions on the solution is called reg-
ularization.

e If A is rank deficient the least squares solution is not
unique.

e Prop 3.1 (Dpl125) Let A be an m X n matrix with
rank(A)=r < n. Then there is an n — r dimensional
set of vectors that all minimizes ||(|| Az — b).

e Proof: Let z be such that Az = 0 then if x minimizes
||Az — b|| then so does x + z.

e If, due to round-off, some o; has a small value rather
than zero, Then the unique solution is likely to be very
large.

e Thus: If A is nearly rank deficient (op is small) the
solution z is ill-conditioned and possibly very large.

Prop 3.3 (Dpl126) When A is exactly singular, the z
tht minimizes ||Az — b||2 can be characterized as follows:
Let A= UXVT have rank r < n. Then write

1 0

A=[U1,U2] { oo

] Vi1, vo? =u,5, V7
where ¥ is r X r and non-singular and U; and V; have r
columns. Let 0 = 044, (21). Then:

e all solutions x can be written as x = VlEl_lUlTbJr Vaz,
z being any vector.

Proof: Choose U such that W = [U},Us, U] is an or-
thogonal matrix.

Az = 0|3 = W (Az = b)[[3 = | | US| (U:1V) e = b)I[3

= [[1Vife — UT 0|3 + [|US BlI5 + 1107 0] 13
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Thus, x is multiplied with Vi, anything with V5 will add
Zero.

e the solution z has minimal norm ||z||2 precisely when
z = 0, in which case z = Vi¥'U{b and ||z]|2 <
[b]]2/0

Proof: Since V; and V5 are mutually orthogonal by
Pythagoras

213 = IViZT UL bl + (V213

which is minimized when z = 0.

e Changing b into b + db can change the minimal norm
solution = by at most ||0b]|2/o

Proof:
VIS U 8bll2 < |17 I210]]2 = [[8b]|2/o
e The norm and condition number of the unique mini-

mal norm solution x depends on the smalleest non-zero
singular value of A.

e This is the key to a practical algorithm!

Pseudoinverse for Rank Deficient matrix
e Let A=UXVT = U; 5,V Then At = ;27 U] or

+ 1
1 0 p 0

+ _ yTy+ + 1 _ 1
AVEUWhereE[O 0} [0 0]

e So the least squares solution is always x = A*b. When
A is rank deficient,  has minimum norm.

e So we need to know the rank of A and the smallest
singular value.

Example: Demmel p128

= (1) 8> has smallest nonzero eigenvalue 1. With
1 . 1 .
b= 1) we get least square solution x = 0 with con-

dition number 1/0 = 1.

10

But if we have A = ( 0 5) we have smallest nonzero

. 1 o
eigenvalue € and x = ( 1 /5) and condition number 1/¢.

e The practical solution is to treat all o; smaller than a
tolerance (normally O(e) - ||Al]2) as zero.

e This is called truncated SVD

e A similar idea can be used in QR-decomposition, but
it is less reliable.

Some review questions:
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e Q45. What is the range R(A) of a matrix A? How do
you find a basis for it by means of SVD?

e Q50. What is meant by a rank deficient matrix?

e Q51. How can we determine A®) the matrix of rank
k closest to a given matrix A using SVD?

e Q53. What are the advantages and disadvantages of
replacing the matrix A by a lower rank approximation
A®) when solving a least squares problem?



