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DN2222
Applied Numerical Methods
- part 2:
Numerical Linear Algebra

Lecture 5
Singular Value Decomposition (cont)
&
Eigenvalues

2012-11-15

Note!

Next Lecture (F6) is
Monday 19/11 at 13-15 in room ?77?
(NA seminar room has only 20 seats?)

Next Lecture (F7) is
Wednesday 21/11 at 10-12 in room E32

Next Lab Help Session is
Friday 23/11 at 8-10 in the NA seminar room

Def of eigen-values and -vectors, (Dp140)

e The polynomial p(\) = det(A — M) is called the char-
acteristic polynomial of A. The roots of p(A) = 0 are
the eigenvalues of A (D: Def 4.1)

e The characteristic polynomial of an n x n matrix A is
of degree n and thus have n roots.

e A non-zero vector x satisfying Az = Az is a (right)
eigenvector for the eigenvalue A. (D: Def 4.2)

e A non-zero vector y satisfying y* A = A\y* is a left eigen-
vector for the eigenvalue A. (D: Def 4.2)

General

e Algorithms for eigenvalues problems can roughly be di-
vided into two categories: direct and iterative methods.

e Since determining eigenvalues is always an iterative
method, by direct is meant methods that converges
within a certain number of iterations. They usually
cost O(n?) and are independent of the matrix entries.

e Iterative methods are usually used for sparse matri-
ces, where the matrix-vector multiplication is relatively
cheap. Convergence rate depends strongly on the ma-
trix entries.

e Most algorithms will involve transforming the matrix
A into a simpler, or canonical form, from which it is
easy to calculate the eigen-values and eigen-vectors.

e Let S be any nonsingular matrix. Then A and B =
S~LAS are similar matrices and S is a similarity trans-
formation. (D: Def 4.3)

e Let B=S"1AS, s0 A and B are similar. Then A and
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B have the same eigenvalues, and z (or y) is a right
(or left) eigenvector of A iff S~1z (or S*y) is a right
(or left) eigenvector of B.

Let B =S"1AS, so A and B are similar. Then A and
B have the same eigenvalues, and x (or y) is a right
(or left) eigenvector of A iff S~1z (or S*y) is a right
(or left) eigenvector of B.

PROOF1: Using that det(XY) = det(X) - det(Y) for any
square matrices, we have

det(A — \I) = det(S~' (A — \I)S) = det(B — \I)

PROOF2: Az = Az hold iff ST1ASS 'z = AS~ 1z or
B(S~lz) = A(S™1x)

Quiz

Which are the two simplest matrix forms for determin-
ing eigenvalues?

To avoid complex numbers we might consider block
triangular matrices. Why?

General ideas

The two simplest matrix forms for determining eigen-
values are diagonal and triangular!

To avoid complex numbers we might consider block
triangular matrices. Since for real matrix elements -
any complex valued eigenvalues comes in pairs - 2x2
and 1x1 blocks are useful.

The two most common canonical forms are the Jordan
form and the Schur form.

Given A there exists a nonsingular S such that S™1AS =
J, where J is in Jordan canonical form. This means

that J is block diagonal, with J = diag(Jp, (A1), Jny (A2), ..

and the n; x n; matrix

A1 0
In; =
0 A

J is unique, up to permutations of the blocks.

Each J,,(A) is called a Jordan block with eigenvalue A
of algebraic multiplicity m.

If n, = 1 and that )\; is an eigenvalue of only that
block, A; is called a simple eigenvalue.

If all n;, = 1, J is diagonal and A is diagonalizable,
otherwise it is called defective.

A defective matrix does not have n eigenvectors.
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e In invariant subspace of A is a subspace XeR"™ such
that zeX — AzreX

e The Jordan form tells everything about a matrix: eigen-
values, eigenvectors and invariant subspaces. But it is
bad to compute for 2 numerical reasons! 1. It is sen-
sitive to round-off errors. 2. It cannot be computed
stably in general.

e So instead of computing S™'AS = J, where S can
be arbitrarily ill-conditioned, we will restrict S to be
orthogonal (so k2(S) = 1) to guarantee stability:

e The Schur canonical form: Given A, there exists a
unitary matrix () and an upper triangular matrix T
such that Q*AQ = T. The eigenvalues of A are the
diagonal entries of T'. (D: Thm 4.2)

PROOF We use induction. It is obviously true for n =
1. Let A be an eigenvalue with corresponding normalized
eigenvector u. Choose U such that U = [u, U] is a unitary
matrix. Then
N u* ~ u*Au  uwrAU
vr-A-U= [U} A-fu Ul= [U*Au U*Azﬂ

But u*Au = v*Au = Au*u = X and U*Au = U* u =
A*u =0 and U*AU is a (n — 1) x (n — 1) matrix. Then

* A T 1 0|(A 2Q||1 O
vav=[5 oo || alls Tl &
. 1 0 . .
so Q*AQ =T with @ =U [O Q} , unitary as desired.

e The real Schur canonical form: If A is real, there ex-
ists a real orthogonal matrix V such that VTAV =T
is quasi-upper triangular. This means that T is block
upper triangular with 1-by-1 and 2-by-2 blocks on the
diagonal. Its eigenvalues are the eigenvalues of the di-
agonal blocks. The 1-by-1 blocks correspond to real
eigenvalues. The 2-by-2 blocks correspond to a com-
plex conjugate pair of eigenvalues.

Computing eigenvectors from the Schur form

e Suppose A = t;; has multiplicity 1. Write (T—AI)xz =0

as
[T — AN Tho T3 1
0= 0 0 T23 i) =
L 0 0 T33 — A I3
[(Ty1 — M)xy + Thawa + Tizws
To3x3
(T33 — Al)w3

where Th1 is (i—1) x (i —1), Tog = A is 1 x 1, and T35 is
(n—i)x (n—1i), and x is split correspondingly. Since X is
simple, (T33— AI) is nonsingular, thus (T35 —Al)axs =0
implies 3 = 0. Choosing (arbitrarily) x2 = 1 we get
r1 = 7((T11 — )\I)_IT12 SO

1 —(T11 — M) 71Ty
x=|x2 | = 1
I3 0
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so we only need to solve a triangular system for z;.

Insight

e Not all matrices are diagonalizable, but we can trans-
form any square matrix into triangular form by means
of a unitary (or orthogonal) similarity. This is the con-
sequence of the Schur theorem.

Multiple eigenvalues
e Multiple eigenvalues have infinite condition number.

e Eigenvalues “close to multiple” have large condition
numbers, since there is a small A such that A + dA
has multiple eigenvalues.

e Let A be a simple eigenvalue of A with right eigenvector
x and left eigenvector y, normalized so that ||z||z =
[ly|l2 = 1. Let A+ 6 be the corresponding eigenvalue
of A+ JA. Then

0= L2 o(sAlP)
JA||
N < 2+ oqiaalR)

so 1/|y*z| is the condition number of the eigenvalue A.
(D: Thm 4.4)

e Let A be normal (ie AA* = A*A). Then |dA| < ||0A||+
O(||6A]*) (D: Cor 4.1)

e Let A have all simple eigenvalues with right eigenvector
2 and left eigenvector y, normalized so that ||z||s =
[lyll2 = 1. Then the eigenvalues of A+ §A lies in disks

[16All2

centered at \; with radius n - 77zl

Power method:

e Given x(y we iterate:

i=0

while ...
y=Axx;
x=y/norm(y); % Approx eigenvector
d=x’*A*x; ) Approx eigenvalue
i=i+1;

end;

e It will find the largest eigenvalue.

e The convergence rate depends on | A3/ A1|. Even though
[A2/A1] < 1 convergence is often slow.

Inverse power method:

o Given x(y we iterate:
i=0
while ...
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y=(A-s*I)\x;
x=y/norm(y); % App eigenvector
d=x’*A*x; % App eigenvalue
i=i+1;

end;

It will find the largest eigenvalue of (A4 — sI)~!
ie the smallest eigenvalue of (A — sI)
ie the eigenvalue of A closest to s.

If s is very close to A\ the ratio (A — s)/(A2 — ) will
be very small, thus convergence is fast.

Householder algorithm:

A Hessenberg matrix is upper triangular with one non-
zero subdiagonal.

If A is Hermitian (if real: symmetric) then the Hessen-
berg matrix will be symmetric and thus tridiagonal.

The Householder algorithm transforms the matrix A
into Hessenberg form with an orthogonal similarity
transformation, A = WHWT

The matrix W is a product of Householder transforma-
tions (or elementary reflections) W = Hy1Hy ... H,_9)

An elementary reflection is a matrix, H = I — 2uu”,
where the vector u has |Ju|l2 = 1. An elementary re-
flection is both orthogonal and symmetric.

Hp =1-— 2uku£ makes all elements except the k£ + 1
first elements in column k of A zero. Then vector uy
is zero in the first k positions. (uy is calculated from
the last n — k elements of column & of matrix A)

With A05 = 7AW and A® = A0S H, we have

r T x x ryy
AV = |z = =z z| A0 = |0 ¥y y
: 0
LT x* X x 0 v y

[z 2z =z z r z =z

r oz Zz z r oz z

A = |0 2z =z 21425 - |10 r w

0 : : 00 :

L0 2z =z z 0 0 w

Example (Ruhe p 30, extended):

16 2 3 13

. 5 11 10 8

A = magic(4) = 9 7 6 12
4 14 15 1

Hy, = I — 2upul with ui. = 0, upr1 = (agg1k — @)/r
and v; = ag;/r, j=k+2,k+3,...,n with

o = —sgn(akt1,k)\/ 2 j—j i1 @5 and

5
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r = y/2a(a — agt1,r) (ie ug is constructed using the
last n — k components of column ay,)

r T T x
o AW —WwTAW = |¥ T T T Gith W = HyH,.
0 = = «x
0 0 =z «
1 0 0 O 1 0 0 O
0O =z = =z 01 0 O
o M= 0 z =z =z and H; = 0 0 z =z
0O =z = =z 0 0 = =z

e Both Hj and W are orthogonal. But even though Hj
is symmetric, W is not.

On computation efficiency:

e Even though we saw Hj, as full matrices above, they are
really not computed that way. Computing H;a, where
a is a column of A would require n? multiplications.

o We use the fact that H; is a rank 1 matrix.
Hia = (I —2uu®)a =a —2uula = a — u(2u’a)
uTa is a scalar, created by n multiplications. Moving
up multiplication by 2 means a single multiplication.
Now we have a scalar times a vector, another n multi-
plications. Finally subtracting two arrays, n additions.
This is 2n operations, instead of n2

Some review questions:

e Q55. What does the position of the eigenvalues in the
complex plane say about the behaviour of the solution
of the ODE system

d
d—f = Az, z(0) =10
e Q56. What is meant by two matrices being similar?

e Q57. Show that two similar matrices have the same
set of eigenvalues. How are the eigenvectors related?



