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Transformation algorithms

• For matrices of moderate size, the standard method to
compute eigenvalues is through similarity transforma-
tions.

• If there are n linearly independent eigenvectors. Let
them build the non-singular X and then

AX = XD, giving A = XDX−1, where D = diag(λk)

in which case we say A is diagonalizable.

• Not all matrices are diagonalizable, but one can trans-
form any square matrix into triangular form by a uni-
tary (orthogonal) similarity transformation. That is
what the Schur theorem says.

• Any practical transformation algorithm is divided into
two phases: an initial reduction (into Hessenberg form,
by n − 2 elementary transformations), followed by an
iterative phase where the remaining sub-diagonal ele-
ments are shrunk (usually by the QR algorithm)

Final algorithm - QR

• Given the transformation into Hessenberg form. Let
A1 = H (the Hessenberg matrix) and U1 = W (the
transformation matrix).

− for k=1,2,. . .

− Factorize Ak = QkRk with QK orthogonal and Rk

upper triangular.

− Multiply Ak+1 = RkQk

− Accumulate Uk+1 = UkQk

• Then Ak+1 = UT
k AUk is (almost) upper triangular.

• Convergence for the QR algorithm without shifts is
slow.

• If the matrix Ak is singular, ie has a zero eigenvalue,
one diagonal element of Rk will be zero, usually the
last. Then the remaining (n− 1)× (n− 1) sub-matrix
contains the other eigenvalues. Shrinking the size of
the problem like this is called deflation.

Final algorithm - QR with shifts
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• Given the transformation to Hessenberg form, A =
WHWT . Let A1 = H (the Hessenberg matrix) and
U1 = W (the transformation matrix).

− for k=1,2,. . .

− Choose shift σk

− Factorize Ak = QkRk

− Multiply Ak+1 = RkQk

− Accumulate Uk+1 = UkQk

• The new Ak+1 is still an orthogonal similarity trans-
formation of Ak:

Ak+1 = RkQk+σkI = (QT
k (Ak−σkI)Qk+σkI = QT

kAkQk

• Common choices for shifts are:

− Newton shift: The last diagonal element (is the
eigenvalues of the last 1× 1 block).

− Wilkinson shift: An eigenvalue of the last 2 × 2
sub-matrix. (An advantage with this method is
that it can give complex shifts, even with a real
matrix).

Iterative eigenvalue algorithms

• The power method xk = Axk−1 has slow convergence
if the largest eigenvalue is not well isolated. It is also
not efficient - it throws away all computed xj .

• If we save all the vectors we get the Krylov subspace

Kk(A, x0) = {x0, Ax0, A
2x0, . . . , A

k−1x0}

• The vectors in the Krylov space will be less and less
independent. The Arnoldi algorithm will make an or-
thonormal basis from them.

• Start with the first vector. From the next, remove all
dependency on the previous (one step from the Gram-
Schmidt algorithm). Then normalize the remaining
vector and put it as the next basis vector.

Arnoldi algorithm

• Start with q1 = x/||x||2

− for k=1,2,. . .

− u = Aqk

− for j=1,2,. . .,k.
hj,k = qHj u
u = u− qjhj,k

− hk+1,k = ||u||2

− qk+1 = u/hk+1,k

Lanczos algorithm

• Start with q1 = x/||x||2
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− for k=1,2,. . .

− u = Aqk − qk−1βk−1

− αk = qHk u

− u = u− qkαk

− βk = ||u||2

− qk+1 = u/βk

• The Lanczos uses much less operations per iteration
than Arnoldi.

• Lanczos only saves the last two vectors.

• Thus Lanczos manages much bigger problems.

• However, orthogonality gets lost after a while. Re-
orthogonalization is as costly as Arnoldi.

Spectral transformation

• A standard practice to find eigenvalue to a large ma-
trix is to apply a Krylov space algorithm, Lanczos or
Arnoldi, to a shift invert spectral transformation:

C = (A−σB)−1B, with eigenvalues θj = 1/(λj−σ)
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