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Static Iterative Methods

• P −Q = A

• Ax = b

• Px−Qx = b

• Px = Qx+ b

• x = P−1Qx+ P−1b

• x = Mx+ c

• =⇒ x(m+1) = Mx(m) + c, Convergence if ||M || < 1.
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Static Method - Jacobi

• P = diag(A)

• Very simple to calculate.

• P−1 very simple to obtain.

• Convergence guaranteed if A is diagonally dominant
(but can be very slow!)

• Converence is linear (of course).
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Static Method - Gauss-Seidel

• P = L(A) + diag(A)

• Very simple to obtain.

• P−1 quite simple to obtain (triangular matrix).

• Convergence guaranteed if A is diagonally dominant
(but can be very slow!)

• Faster than Jacobi, since immediately uses updated
values.
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Krylov Subspace Methods

• Are used both for solving Ax = b and
finding eigenvalues of A.

• Can be used when A is a “black box”.

• Especially good when A is sparse
(i.e. computing Ax requires few operations).

• Can be used even if A is not available,
(eg Ax is available only as result of calling a routine).
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• A variety of different Krylov subspace methods exist.
Some are suitable for nonsymmetric matrices, and oth-
ers assume symmetry and/or SPD.

• The different methods optimize different things, like
||xk − x∗|| or ||rk|| = ||b−Axk||.

• Most famous method: Conjugate Gradient Method.
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Conjugate Gradient Method - CG

• Start with x0 = 0, giving r0 = b and search direction
p1 = b.

• FOR k = 1, 2, . . .
z = Apk
vk = (rTk−1rk−1)/(p

T
k z)

xk = xk−1 + vkpk
rk = rk−1 − vkz
µk+1 = (rTk rk)/(r

T
k−1rk−1)

pk+1 = rk + µk+1pk

• END
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Preconditioning

• If we find a matrix M that is a good approximation of
A, but is easy to invert (or rather easy to solveMy = c)
we can solve the preconditioned system.

M−1Ax = M−1b

• If M is very simple/crude, not much improvement is
made.

• If M is very close to A, convergence is fast, however
each round is very cumbersome.
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• The simplest choice for M is the diagonal of A.

• Another popular choice is Incomplete Cholesky factor-
ization.

A = LLT +R = M +R
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Preconditioned Conjugate Gradient Method - PCG

• Start with x0 = 0, giving r0 = b and search direction
p1 = M−1b. y0 = M−1r0.

• FOR k = 1, 2, . . .

z = Apk
vk = (yTk−1rk−1)/(p

T
k z)

xk = xk−1 + vkpk
rk = rk−1 − vkz

yk = M−1rk
µk+1 = (yTk rk)/(y

T
k−1rk−1)

pk+1 = yk + µk+1pk
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• END
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CG Iterative solutions

x0 x1 x2 x3 x4 x5

0.00000 1.83333 3.33333 4.50000 5.33333 5.83333
0.00000 3.66667 6.66667 9.00000 10.66667 10.66667
0.00000 5.50000 10.00000 13.50000 13.50000 13.50000
0.00000 7.33333 13.33333 13.33333 13.33333 13.33333
0.00000 9.16667 9.16667 9.16667 9.16667 9.16667
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Solving Ax = b

• We seek the “best” approximative solution! How define
“best”?

• By minimizing ||xk − x∗||2?
There is no such Krylov space method!

• By minimizing ||rk||2!
Done by MINRES (“Minimum Residual”) for symmet-
ric (indefinite) A and GMRES (“Generalised Minimum
Residual”) for non-symmetric A.
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• By making rk orthogonal toK, ie the space spanned by
the vectors A(m)x0. Called the “orthogonal residual
property” or “Galerkin condition”. For symmetric A
the SYMMLQ method works. For non-symmetric A
the GMRES will do.

• When A is SPD, the conjugate gradient method will
minimize ||xk − x∗||A−1 (where ||z||A =

√
zTAz).

• If A is SPD, CG is the choice! Even if MINRES seems
to be better, minimizing ||r||2 rather than ||r||A−1 ,
MINRES is more work, is less stable and thus often
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gives a worse result.

• CG only needs to keep 4 vectors, and does very few
operations.

• The search directions pi are called A-conjugate since
pTkApj = 0.

• The convergence rate of CG is proportional to the
square root of A : s condition number.

• However, the distribution of eigenvalues of A also affect
the convergence rate.

15



• Also CG gain from preconditioning.
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Trick?

• Any system Ax = b can be changed into a SPD system
using the normal equations ATAx = AT b.

• It then includes the least-squares-problem
minx ||Ax− b||2.

• It may be very ill-conditioned if κ(A) is large, but if
not, the method is fast!
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Decision Tree for Ax=b

see Figure 6.8 in Demmel, p321!
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Iterative eigenvalue algorithms

• The power method xk = Axk−1 has slow convergence
if the largest eigenvalue is not well isolated. It is also
not efficient - it throws away all computed xj .

• If we save all the vectors we get the Krylov subspace

Kk(A, x0) = {x0, Ax0, A
2x0, . . . , A

k−1x0}

• The vectors in the Krylov space will be less and less
independent. The Arnoldi algorithm will make an or-
thonormal basis from them.
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• Start with the first vector. From the next, remove all
dependency on the previous (one step from the Gram-
Schmidt algorithm). Then normalize the remaining
vector and put it as the next basis vector.
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Arnoldi algorithm

• Start with q1 = x/||x||2
− for k=1,2,. . .

− u = Aqk

− for j=1,2,. . .,k.
hj,k = qHj u
u = u− qjhj,k

− hk+1,k = ||u||2
− qk+1 = u/hk+1,k

21



Lanczos algorithm

• For symmetric A

• Start with q1 = x/||x||2
− for k=1,2,. . .

− u = Aqk − qk−1βk−1

− αk = qHk u

− u = u− qkαk

− βk = ||u||2
− qk+1 = u/βk
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• The Lanczos uses much less operations per iteration
than Arnoldi.

• Lanczos only saves the last two vectors.

• Thus Lanczos manages much bigger problems.

• However, orthogonality gets lost after a while.
Re-orthogonalization is as costly as Arnoldi.
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Spectral transformation

• A standard practice to find eigenvalue to a large ma-
trix is to apply a Krylov space algorithm, Lanczos or
Arnoldi, to a shift invert spectral transformation:

C = (A−σB)−1B, with eigenvalues θj = 1/(λj−σ)
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