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Aim of the course

e The basic course gives a very powerful toolbox, man-
aging many problems.

e But when the problems get BIG, then the “old meth-
ods” do not cope. Either they run out-of-memory, take
too long time, or just returns rubbish.

e In this course we try to see/explain why some of these
things occur and how to avoid them.



This course is looking at two types of problems:
1) Solving Ax=b (when A is n x n and m X n,m > n)
2) Finding the eigenvalues (or singular values) of A.

e In basic course we learnt to solve Ax=Db using Gaussian
elimination (with partial pivoting).

e When the size of the problem becomes big, we get into
trouble, either from the problem taking too long time
to solve OR the obtained solution is not trustworthy.

e The latter problem comes from the fact that the com-
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puter is making a round-off error in each calculation.

* We must understand how large the round-off error
is and how much effect can come out of this cumulating
round-off.

e Q2. When is a floating point number normalized?

e Q4. What is the overflow threshhold? What is its
approximate value in IEEE double precision?

e Q7. How do you bound the rounding error when
computing a sum of three numbers, s = a+b-+c?
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Q10. What are well-conditioned problems?

Q11. Why is well-conditioning necessary for obtaining
reliable results?

Q21. Define the condition number of a matrix.
Qxx. What is meant by partial pivoting of a matrix.
Qxx. What is meant by scaling a matrix.

Q9. What are well-posed and ill-posed problems?
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Q12. What are forward and backward stability?

The total round-off error is also shrunk if the amount
of operations needed is lowered.

The order which we number the nodes/variables is im-
portant.

Qxx. What is the RCM method?

Qxx. What year was RCM published?



A new way to solve the system

So far we have solved the system exactly. But there are
situations were a ”good enough” solution can be obtained
with less work than obtaining the full/complete solution.
Which method to choose depends on the matrix A.

e Q29. How many arithmetic operations are needed to
solve a linear system by forward and backward substi-
tution, once the triangular factors L and U are com-
puted?

e Q31. How many arithmetic operations are needed to
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multiply a m x n matrix by a n x p matrix? Compare
with the count for Gaussian elimination!

Qxx. What is the Cholesky method? What is it used
for?

We may transform the matrix into a graph. We can
then use graph theory for optiizing:

Q38. Describe how a graph defines a matrix and vice
versa.

Q39. How does fill-in occur when one does Gaussian
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elimination on a sparse matrix. Describe it in both
matrix and graph terms.

e We then have to agree on a way to measure the error
and/or ”optimize” the solution.

o We measure the size of an array using a norm.

e Optimzing in euclidian norm will give another solution
than optimzing in max-norm or inf-norm.
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Quiz

Given the three data points x = (1,2,3) and y =

(2,3,5).
chosen as

[I7]l2
[17]loo

[I7[lx

Determine the optimal line if the norm is
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e Qxx. What is meant by Equivalent norms?
Also, when we get an approximate solution, we get a
non-zero residual. First we see that a small residual not
neccessarily means a small error.
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When trying to solve
0.324 0.973 x1\ _ (0.649
0.273 0.819 xo ) \0.546
two persons got the different solutions
4= —11.128 and  F— —0.936
T\ 4.374 —\ 0.876

Which solution should we use?
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The residuals in the two cases are

. ( 0.0014 e (—0.0999
r=disb= <0.0016) and 7= Az-b= <0.0841)

[[7|]2 = 0.0022 and |||z = 0.1306
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P —11.128 and i — —0.936
—\ 4.374 —\ 0876
||#]]2 = 0.0022 and ||| = 0.1306

In fact, the true solution to the system is z = (=1 1)7
giving

= —10.128 and = F—g— 0.064
N 3.374 N -\ —0.124

|é]]2 = 10.675 and  ||é]|s = 0.1395

>

é =

with
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Remember that
Ay=p, Az =b—o Ax(y—xz)=(p—>) < Ae=r
[Ir (] < T[A[] - [lel]
llell < [lA=H] - I
||Al|l2 = 1.3405 ||[A™Y|]2 = 4910.3
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e We must then realise that Minimizing the residual might/will
give another solution that minizing the error.

o Qxx. Is this acceptable? Could we by a solution that
has a large error but a small residual?
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Least Squares Method
by Normal Egs (hi cond),
QR-decomposition (2x work), or
SVD (more work, chose rank!).

Morse Pseudo inverse, choose dimension depending on
given/wanted accuracy. (avoiding the very ill-conditioned,
nearly not-linearly-independant problems)

Iterative methods:
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Static methods (Jacobi, Gauss-Seidel)
Krylov space methods - Conjugate Gradient Method
Preconditioning

3 programming paradigms
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EIGENVALUES:

Methods are divided into two cathegories: direct &
iterative

Similarity transformations, into simpler form
Q56. What is meant by two matrices being similar?

Q57. Show that two similar matrices have the same
set of eigenvalues. How are the eigenvectors related?

Schur theorem
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Power method, inverse power method
Householder algoritm

Arnoldi

Lanczos

Qxx. Why can Lanzcos alg manage much bigger ma-
trices than Arnoldi method?
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