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Aim of the course

• The basic course gives a very powerful toolbox, man-
aging many problems.

• But when the problems get BIG, then the “old meth-
ods” do not cope. Either they run out-of-memory, take
too long time, or just returns rubbish.

• In this course we try to see/explain why some of these
things occur and how to avoid them.
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This course is looking at two types of problems:

1) Solving Ax=b (when A is n× n and m× n,m > n)

2) Finding the eigenvalues (or singular values) of A.

• In basic course we learnt to solve Ax=b using Gaussian
elimination (with partial pivoting).

• When the size of the problem becomes big, we get into
trouble, either from the problem taking too long time
to solve OR the obtained solution is not trustworthy.

• The latter problem comes from the fact that the com-
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puter is making a round-off error in each calculation.

* We must understand how large the round-off error
is and how much effect can come out of this cumulating
round-off.

• Q2. When is a floating point number normalized?

• Q4. What is the overflow threshhold? What is its
approximate value in IEEE double precision?

• Q7. How do you bound the rounding error when
computing a sum of three numbers, s = a+b+c?
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• Q10. What are well-conditioned problems?

• Q11. Why is well-conditioning necessary for obtaining
reliable results?

• Q21. Define the condition number of a matrix.

• Qxx. What is meant by partial pivoting of a matrix.

• Qxx. What is meant by scaling a matrix.

• Q9. What are well-posed and ill-posed problems?
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• Q12. What are forward and backward stability?

• The total round-off error is also shrunk if the amount
of operations needed is lowered.

• The order which we number the nodes/variables is im-
portant.

• Qxx. What is the RCM method?

• Qxx. What year was RCM published?
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A new way to solve the system

So far we have solved the system exactly. But there are
situations were a ”good enough” solution can be obtained
with less work than obtaining the full/complete solution.
Which method to choose depends on the matrix A.

• Q29. How many arithmetic operations are needed to
solve a linear system by forward and backward substi-
tution, once the triangular factors L and U are com-
puted?

• Q31. How many arithmetic operations are needed to
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multiply a m× n matrix by a n× p matrix? Compare
with the count for Gaussian elimination!

• Qxx. What is the Cholesky method? What is it used
for?

• We may transform the matrix into a graph. We can
then use graph theory for optiizing:

• Q38. Describe how a graph defines a matrix and vice
versa.

• Q39. How does fill-in occur when one does Gaussian
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elimination on a sparse matrix. Describe it in both
matrix and graph terms.

• We then have to agree on a way to measure the error
and/or ”optimize” the solution.

• We measure the size of an array using a norm.

• Optimzing in euclidian norm will give another solution
than optimzing in max-norm or inf-norm.
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Quiz

• Given the three data points x = (1, 2, 3) and y =
(2, 3, 5). Determine the optimal line if the norm is
chosen as

◦ ||r||2

◦ ||r||∞

◦ ||r||1
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• Qxx. What is meant by Equivalent norms?
Also, when we get an approximate solution, we get a

non-zero residual. First we see that a small residual not
neccessarily means a small error.
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When trying to solve
(

0.324 0.973
0.273 0.819

)(

x1

x2

)

=

(

0.649
0.546

)

two persons got the different solutions

x̂ =

(

−11.128
4.374

)

and x̃ =

(

−0.936
0.876

)

Which solution should we use?
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The residuals in the two cases are

r̂ = Ax̂−b =

(

0.0014
−0.0016

)

and r̃ = Ax̃−b =

(

−0.0999
−0.0841

)

with
||r̂||2 = 0.0022 and ||r̃||2 = 0.1306
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x̂ =

(

−11.128
4.374

)

and x̃ =

(

−0.936
0.876

)

||r̂||2 = 0.0022 and ||r̃||2 = 0.1306

In fact, the true solution to the system is x = (−1 1 )
T

giving

ê = x̂− x =

(

−10.128
3.374

)

and ẽ = x̃− x =

(

0.064
−0.124

)

with
||ê||2 = 10.675 and ||ẽ||2 = 0.1395
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Remember that

Ay = p,Ax = b → A ∗ (y − x) = (p− b) ↔ Ae = r

||r|| ≤ ||A|| · ||e||

||e|| ≤ ||A−1|| · ||r||

||A||2 = 1.3405 ||A−1||2 = 4910.3
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• Wemust then realise that Minimizing the residual might/will
give another solution that minizing the error.

• Qxx. Is this acceptable? Could we by a solution that
has a large error but a small residual?
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Least Squares Method

• by Normal Eqs (hi cond),

• QR-decomposition (2x work), or

• SVD (more work, chose rank!).

• Morse Pseudo inverse, choose dimension depending on
given/wanted accuracy. (avoiding the very ill-conditioned,
nearly not-linearly-independant problems)

• Iterative methods:
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• Static methods (Jacobi, Gauss-Seidel)

• Krylov space methods - Conjugate Gradient Method

• Preconditioning

• 3 programming paradigms
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EIGENVALUES:

• Methods are divided into two cathegories: direct &
iterative

• Similarity transformations, into simpler form

• Q56. What is meant by two matrices being similar?

• Q57. Show that two similar matrices have the same
set of eigenvalues. How are the eigenvectors related?

• Schur theorem
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• Power method, inverse power method

• Householder algoritm

• Arnoldi

• Lanczos

• Qxx. Why can Lanzcos alg manage much bigger ma-
trices than Arnoldi method?
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