
DN2222, KTH, Programming Assignment 2, autumn 2012.

DN2222 - Autumn 2012

Programming assignment 2

Direct Methods for Sparse Matrices

Study the relevant topics before preparing solutions to the assignments. D:2.7 and
L:2. In the reading advice D means the book Applied Numerical Linear Algebra by JW

Demmel and L (and sometimes R) means the lecture notes Topics in Numerical Linear
Algebra by A Ruhe.

Extra reading:

In Matlab’s document browser you will find an instructive description. Choose MATLAB
-> User Guide -> Mathematics -> Sparse Matrices. Some extra details and help for
this assignment are given on the course home page as “Extra tips”.

If you are interested, you can read the original paper: John R Gilbert, Cleve Moler

and Robert Schreiber: Sparse matrices in MATLAB: Design and Implementation,
SIAM J Matrix Anal. Appl. Vol 13, No 1, January 1992, pp 333-356. (Download-able from
the course’s home page).

Test matrices can be found on the Matrix Market of the National Institute of Standards
and Technology (NIST). (http://math.nist.gov/MatrixMarket/).

You are encouraged to work in groups of two and you may work at any time. The
course assistant Ashraful Kadir will answer questions concerning these assignments at the
scheduled lab sessions.

Hand in a report by November 30 at 15 o’clock at the Student expedition. The report
should be short and show your conclusions. It may be hand written and should preferably
include MATLAB-plots, etc.

Do not include all of your MATLAB code or printout. Only include a few lines showing
the most interesting parts/results. I do not want to see long MATLAB programs or diary
files!

Exercise 1. Compare re-orderings

We will start with a matrix coming from applying a finite difference approximation on
the Laplace equation (the regular five-point stencil) over some different 2D domains, both
square and L-shaped.

You will compare the standard numbering with those obtained by RCM, MMD (really
AMD, see below) and ND. You will compare node numbering order, matrix structure, fill
in, etc.

Exercise 1a. Standard numbering

The standard matrix can be obtained by Matlab from the routines numgrid (to obtain
the grid matrix G, ie node numbering) and delsq (to obtain the corresponding FDM-matrix,
A). Use both square- and L-shaped domains and try different sizes n. (The L-shaped domain
with a n=15 grid is the picture you see when Matlab starts!)

1



DN2222, KTH, Programming Assignment 2, autumn 2012.

Check the structure of the matrix A with the routine spy. Then do Cholesky factor-
ization and check the fill in.

Exercise 1b. RCM

Now renumber the nodes using the Reverse Cuthill McKee method. (Use the Matlab
routine symrcm). Check the structure of the new matrix A. Then do Cholesky factorization
and check the fill in.

Look at and describe the grid reordered by RCM. You may use the routine v2g as
described in “Extra tips”. Note that you need the inverse permutation vector (which can be
obtained by: pr=symrcm(A); iv=1:n; rp(pr)=iv;) (If in doubt, do it by hand for a small
grid.)

Exercise 1c. MMD/AMD

Now renumber the nodes using the Approximate Minimal Degree (Use the Matlab
routine symamd). Check the grid numbering. Check the structure of the new matrix A.
Then do Cholesky factorization and check the fill in.

Exercise 1d. ND

Now renumber the nodes using the Nested Dissection. Unfortunately there is no routine
for re-ordering but the Matlab routine nested does a direct numbering. It only works for
square domains though. Check the grid numbering. Check the structure of the new matrix
A. Then do Cholesky factorization and check the fill in.

Explain your observations and conclusions! Describe characteristics in the resulting
SPY-figures. How can one see in the SPY-picture which method that has been used? Also,
show in an illustrative way the different grid numberings obtained from the different meth-
ods.

Note: The Approximate Minimum Degree ordering (AMD) is different from the Mini-
mum Degree ordering (MMD). Previous there was a function symmmd in Matlab but it has
been replaced by symamd. However, AMD appears to be always better than MMD.

Exercise 2. When is sparse factorization an advantage?

The sparse factorization will use much less storage space and fewer arithmetic operations
than a full matrix code. On the other hand, it needs quite a lot of book-keeping to track
at which places fill in occurs. Now we want to see when it is of advantage to use a sparse
matrix code.

In this exercise we will use an L-shaped domain. Make the matrix A the standard finite
difference matrix. Take the right hand side b as a one (1) in one or a set of contiguous points
(or just close points) in the center of the grid G. Then the solution x will look like a circus
tent with poles in the positions where b is one.

You may use the routine X=v2g(x,G) to get a matrix X from the vector x spread over

2



DN2222, KTH, Programming Assignment 2, autumn 2012.

the grid G and plot it by the command mesh(X). (The non-Matlab routine v2g can be found
on the course home page).

3



DN2222, KTH, Programming Assignment 2, autumn 2012.

Exercise 2a. Experiment with permutations in sparse code

Let the number of grid points vary. Make up a table of the number of nonzeros in the
original matrix A and the Cholesky factors for the original ordering and the reorderings
RCM and AMD. Determine the permutations and measure the time (using Matlab’s tic

and toc) needed for permutation, factorization and solution respectively. Also determine
the storage space needed (using whos).

Then check the solution: Compute the residual r=A*x-b and list the norm of r.

Start with a moderate size, say n=12 along one side. Then (when your code is debugged)
increase the grid size, say by a factor of 2, until you either run out of memory or the
experiment takes longer than say 3 minutes. Record for which n this happens, and report
which machine you use! Provide in your report a table over n and the different run-times.

As a comparison, measure the time for Matlab’s built-in implementation for solving a
linear system, \ (“backslash”). Include also these values in your table. (It will probably be
the fastest in your table - not only because it is not divided into three separate calls.)

Exercise 2b. Experiment with permutations in full code

Do and report the same computations as in 2a but with full matrices. Report also for
which matrix sizes the full code is faster than the sparse one.

Comment your conclusions about when to use sparse or not!

A note on timing: The Matlab clock ticks very slowly. You might need to run the
quick operations several times and the divide the total time by the number of repeats to get
accurate values.

Good luck! /Ninni

4


