
 

Staffan Romberger, CSC, KTH, 2008-09-03 

Introduction to computers and Matlab at CSC 

Goal 

Participants students and lecturer 

Lessions and labs 

Timetable 

Outline 

Resources 

Goal  

To prepare students to use the Unix-system at CSC for problem solving 

with Matlab. In the next course next week you are supposed to solve 

numerical problems in Matlab on the computer. The course is non-

compulsory and without examination. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Lecturer 

Staffan Romberger, srom@csc.kth.se, room 1615, Osquars backe 2, 

floor 6, phone 790 8164. 

Students 

• Can you program? 

• Can you program in Matlab? 

• Do you know fundamentals of Unix? 

• Do you have access to a computer outside KTH? 

Lessions and labs 

We have 4 2-hour lessions for presentation of new material, advices about 

study, demonstations, questions. 

We have 4 2-hour lab sessions in a computer room for work with the 

computer, with access to an assisting teacher. You are recommended to 

work in groups of two students with almost equal skill and experience. 

It is adviceable to work also outside these hours at home or in the comuter 

room. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Timetable 

day lesson in room 4523 lab in room Brun 

Tuesday 26 August 13–15 15–17 

Wednesday 27 August  10–12 13–15 

Thursday 28 August  10–12 13–15 

Friday 29 August  10–12 13–15 

Outline 

Lesson 1: Introduction, Unix, terminal, e-mail, web, printing, access from 

outside KTH, command window, formulae, display of numbers, priority of 

operators, built-in functions, variables, workspace, arrays 

Lab 1: Ch. 1, ch. 2 (esp. 2.1, 2.6, 2.10, 2.14). 

Lesson 2: Polynomials, data types, editor window, command file, 

directory, printing, conditional commands, if, logical values, else, elseif, 

switch, try-catch, loops, for, while, break, continue. 

Lab 2: Ch. 3, ch. 4 (esp. 3.3, 3.7, 4.7a, 4.9a, 4.19). 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Lesson 3: Functions, function file, input parameter, output parameter, 

formal and actual parameter, local, global, persistent variable, return, local 

function, variable number of parameters, debugging.  

Lab 3: Ch. 5, ch. 6 (esp. 5.2, 5.9, 5.17, 5.24). 

Lesson 4: Functions as parameters. Other types of data. Other parts of 

Matlab as cell array, structure array, symbolic algebra, file handling, 

objects, graphical user interfaces (GUI). 

Lab 4: Ch. 7, ch. 8, (ch. 8, ch. 9, ch. 10) (esp. 6.11, 6.12, 6.22, 7.3, 8.8, 

8.11). 

Resources 

Computer rooms on floor 4, west wing. See http://lokal2.timeedit.se/kth. 

Delphi help desk Osquars backe 2, floor 2, see opening hours. Web site: 

http://www.sgr.nada.kth.se/index.html.en. 

Stephen J Chapman: Matlab programming for engineers, latest edition 4th 

(THS bookshop). 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

David F Griffiths: An introduction to Matlab. University of Dundee 

(www.maths.dundee.ac.uk/~ftp/na-reports/matlabNotes.pdf, Students 

office, Osquars backe 2, floor 2). 

Refresher: www.nada.kth.se/~katarina/refresher.pdf. 

Course web site: http://www.nada.kth.se/~katarina/master08.html. 

Computer room, Sun computers 

Login with your username and password. 

You will get a graphical interface, JDS (Java desktop system), with a 

desktop with a window for terminal that accepts Unix commands, the panel 

and possibly other windows. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

You can start Matlab with >matlab& i.e. type matlab& at the 

prompt. The & signifies that Matlab is run i a process of its own and that 

control returns to terminal when Matlab is started. 

After some typing the screen looks like this: 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

To log out choose Quit Matlab in Matlab’s File menu and Logout in the 

launch menu of the panel. 

I will henceforth run Matlab on the Macintosh. It works practically the 

same. 

It is possible to rent Matlab for use at home, see 

http://progdist.ug.kth.se/public/index.shtml. You can access your files at 

KTH from home by ftp with Fugu on Macintosh or Putty on Windows or 

you can move files on USB-memory, see 

http://www.sgr.nada.kth.se/delfi/docs/USB-minne.html. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Matlab 

Formulas 

You can use the command window as a calculator. The value of a formula 

is displayed. The value is also assigned to the variable ans. You can 

change the format of the displayed value with format, e.g. format 

compact. 

2 * 2 

2 – 3*5 

pi 

e 

i 

Formulas are interpreted as expected. Matlab evaluates a formula with the 

following operator priority: 

subformulas within () 

unary +, – 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

^ 

*, / 

binary +, – 

Adjacent operators with the same priority are evaluated from left to right. 

Matlab has many built-in functions: 

exp(1) 

format long 

sin(pi/4) 

1/sqrt(2) 

sind(45) 

log(exp(1)) 

sqrt(-2) 

You can use variables to store values. Variables have names containing 

letters and digits and letter case is significant. With who, whos and 

clear you can manipulate variables. 

e = exp(1); 

log(e) 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

r = 2; 

area = pi*r^2 

The display of the value of a command is suppressed when the kommand 

end with a semicolon “;”. You may type several commands om a line. 

Commands ended with comma “,” display their value. A command on a 

line ended with “…” continues with the next line. 

a = 1, b = 2; c = 3 

s = B/(w0^2*sqrt((1-w^2/w0^2)^2+... 

    (w/Q*w0)^2)) 

How do you find information in Matlab? help functionname gives 

information about the function. lookfor keyword gives information 

about functions that contain the keyword in their description. The help 

browser (doc) contains extensive documentation of Matlab. 

help log 

lookfor logarithm 

doc startup 

edit startup 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Arrays 

Matlab (matrix laboratory) was invented by Clive Mohler to describe and 

carry out by computer, common matrix (array) calculations. 

Most values in Matlab are arrays with elements. By now we have only seen 

1!1-arrays of numbers, scalars. We will later see different kinds of 

numbers, logical values (false and true), characters and symbolic algebra 

entities, and other kinds of arrays such as cell arrays, and structure arrays. 

A = [1 2 3; 4 5 6; 7 8 9] 

b = [10 11 12] 

c = [13; 14; 15] 

size(A), size(b), size(c) 

Arrays can be constructed by “[]” where space or “,” denotes new 

column and “;” or return denotes new row. Row and column vectors are 

considered 1!n and n!1 arrays respectively.  

Single elements can be accessed with indices: 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

A(2, 3) 

b(2) = 4 

b(1, 2) 

Any array can be treated as a kolumn vector (with just one index): 

A(4) 

A(8) = 10 

In Matlab you can also denote subarrays: 

A([1 2],[2 3]) 

A(end,2) 

A(:,2) = [7 7 7] 

A(:,2) = 6 

A(1:4:9) = 1; 

A([3 5 7]) = [1 2 3] 

A = [1 4 3 

     2 2 8 

     1 6 1] 

A([1 3],[1 3]) = 0 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

A = [0 4 0 

     2 2 8 

     0 6 0] 

You kan use arrays in construction of new arrays. Create xnew as  

[9 10 0 15]: 

A = [1 2;3 4]; B = [5 6;7 8]; x = [9 10];  

y = [11;12]; z = [13 14]; 

xnew = x; xnew(3) = 0; xnew(4) = 15; 

xnew = [x 0 15]; 

temp = [0 15]; xnew = [x temp]; 

Anew = [A;z]; 

Anew = [A;[13 14]]; 

Anew = [A y]; 

Anew = [A [11;12]]; 

There are many ways to create certain arrays: 

a = 2:5 

b = 1:3:10 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

c = [] 

d = 5:2:4 

e = 10:-1:1 

linspace(0, 12, 6) 

linspace(0, 12) 

ones(2)  

ones(2, 3) 

zeros(2) 

zeros(2, 3)  

eye(2)  

eye(2, 3) 

Some operators (+, -) require array operands of equal size or that one 

operand is scalar (elementwise operators): 

[1 2; 3 4]+[5 5; 6 6] 

[1 2 3]-1 

-[3; 4] 

.*, ./, .\ and .^ are also elementwise operators: 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

[1 2; 3 4].*[2 2; 3 3] 

[1 2; 3 4]./[2 2; 3 3] 

[1 2; 3 4].\[2 2; 3 3] 

[1 2; 3 4].^[2 2; 3 3] 

Transpose an array with .' , or ', the latter creates conjugate transpose. 

a*b denotes matrix multiplication, i.e. last dimension of a must have 

the same size as first dimension of b. 

x = A\b gives the solution to A*x = b or x = inv(A)*b and 

A/B is A*inv(B). A^n denotes A multiplied with itself n times where A 

has to be square. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Diagrams 

To plot y = sin(x) for –2"!x!2": 

x = -2*pi:0.1:2*pi 

y = sin(x) 

plot(x,y); 

To draw a bar diagram of a vector: 

val = [15 17 10 2 13 19]: 

bar(val); 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

At the computer 

Log in and start Matlab. Try selected examples from this lession. 

Try exercises from the book, especially those also on the handout. 

Ask your mates or the teacher when you need help. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Lession 2 

Questions, comments about yesterday 

Polynomials 

Matlab stores polynomials as a coefficient vector with the coefficient of 

highest degree first. With p(x)=x4+5x3–2x2+7x–11 can we calculate: 

p = [1 5 -2 7 -11]; polyval(p,1)  

val = polyval(p,[2 3 5 7 9]) 

Data types 

A data type is one way to store data/interpret the content of computer 

memory as a value. In some programming languages you have to give the 

data type of a variable when you create it.  In Matlab a variable can have 

different data type at different times. Values are stored as bit sequences in 

the computer memory. There are infinitely many numbers. Therefore 

infinite amout of memory should be given to each variable. Instead you 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

have different data types with different memory requirements for different 

purposes. 

int8 integer 8 bits –128..127 

int16 integer 16 bits –32 768..32 767 

int32 integer 32 bits –2 147 483 648..2 147 483 647 

single float 32 bits approx. 3,4E–38..3,4E38 with 7 digits 

double float 64 bits approx. 1,7E–308..1,7E308 with 15 digits 

uint8 unsigned 8 bits 0..255 

uint16 unsigned 16 bits 0..65 535 

uint32 unsigned 32 bits 0..4 294 967 295 

logical not a data type 

Numbers are usually stored as double, but you can choose another data 

type. 

d1 = 32; d2 = uint8(32); whos d1 d2 

Name Size Bytes Class 

d1    1x1     8 double array 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

d2    1x1     1 uint8 array 

Command file 

You can store a series of commands in a file with a name which ends in 

“.m”. These commands are performed when the name is executed in the 

command window. 

Conditional commands, if, switch 

Often you want some commands to be performed only if som condition is 

true. 

if condition 

 commands 

end 

Instead you can make different kommands to be performed if the condition 

is true or false respectively. 

if condition 

 commands1 

else 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

 commands2 

end 

One if-command can contain another. 

if condition1 

 commands1 

 if condition2 

  commands2 

 end 

else 

 if condition3 

  commands3 

 else 

  commands4 

 end 

 commands5 

end 

There shall be exactly one end for each if. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

When a series of conditions are to be examined you can use elseif. 

if condition1 

 commands1 

elseif condition2 

 commands2 

else 

 commands3 

end 

if condition1 

 commands1 

else 

 if condition2 

  commands2 

 else 

  commands3 

 end 

end 

There should not be an end to an elseif. You may omit the else-part: 

if condition1 

 commands1 

elseif condition2 

 commands2 

end 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

You may continue a line with else, elseif or end preceeded by »,» or 

»;». 

Logical values, logical expressions 

Any numerical expression can be used as a condition. 0 is false, nonzero is 

true. True is stored as 1. An array is true if real part of every element is 

nonzero. 

The relational operators <, <=, >, >=, == and ~= give a logical value. 

You can compose logical values with the logical operators ~, &, |, && and 

|| and the logical function xor. Many built-in functions return a logical 

value.  

~a    a&b       a|b       xor(a,b) 
a     a b 0 1   a b 0 1   a b 0 1 
0 1   0   0 0   0   0 1   0   0 1 
1 0   1   0 1   1   1 1   1   1 0 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

That the value of k is between 5 and 17 can be written 5<k<17 in 

mathematics. In Matlab it is written 5<k & k<17. In Matlab 5<k<17 

means something else: 

k = 1; 5<k<17 
ans = 1 
First 5<k is calculated, i.e. 5<1 which is false i.e. 0. Then 0<17 which 

is true, i.e. 1. 

It is easy to mix up = (assign) and == (are equal). 

Operands are usually evaluated before the operator. The short cut 

operators && and || work differently. 

% c = a && b  
if ~a c = 0 
else c = b 
% c = a||b 
if a c = 1 
else c = b 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Leapyear 

In the Julian (Roman) calendar a year is a leap year if it is a multiple of 4. 

In the Gregorian calendar (used i Sweden from 1753) of years ending in 

“00” only those that are multiples of 400 are leap years.  

Let y be a year. Set leapjul and leapgreg to true when y is a 

leap year according to Julian and Gregorian calendar respectively. A year is 

about 365.2422 days and the Gregorian calendar gives 365.2425 i.e. error 

of one day in 3 236 years. 

leapjul = mod(y,4)==0; 
leapgreg = leapjul & ~(mod(y,100)==0 & ... 
mod(y,400)~=0); 
% alternatively 
leapgreg = leapjul & mod(y,100)~=0 | ... 
mod(y,400)==0; 

To test the program: 
y = [1996 2000 2001 2004 2096 2100 2200 2300 2400 2500]; 

leapjul = mod(y,4)==0; 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

disp('leapjul = mod(y,4)==0'); disp([y;leapjul]); 

leapgreg = leapjul & ~(mod(y,100)==0 & mod(y,400)~=0); 

disp('leapgreg = leapjul & ~(mod(y,100)==0 & mod(y,400)~=0)');  

% årtal delbara med 4 men inte sekelår som inte är delbara med 400 

disp([y;leapgreg]); disp('mod(y,100)==0'); 

disp([y;mod(y,100)==0]); disp('mod(y,400)~=0'); 

disp([y;mod(y,400)~=0]); 

disp('~(mod(y,100)==0 & mod(y,400)~=0)'); 

disp([y;~(mod(y,100)==0 & mod(y,400)~=0)]); 

leapgreg = leapjul & mod(y,100)~=0 | mod(y,400)==0; 

disp('leapgreg = leapjul & mod(y,100)~=0 | mod(y,400)==0');  

% years multiples of 4, not multiples of 100 but of 400 

disp([y;leapgreg]); 

disp('mod(y,100)~=0'); disp([y;mod(y,100)~=0]); 

disp('mod(y,400)==0'); disp([y;mod(y,400)==0]); 

disp('leapjul & mod(y,100)~=0'); 

disp([y;leapjul & mod(y,100)~=0]); 

Triangle analysis 

Determine if a triangle with the sides a, b and c is equilateral, isosceles, 

scalene or non-existent. 

% Analyses a triangle with sides a, b and c. 
if a<=0 | b<=0 | c<=0 'non-existent' 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

elseif a>=b+c | b>=c+a | c>=a+b 'non-existent' 
elseif a==b & b==c & c==a 'equilateral' 
elseif a==b | b==c | c==a 'isosceles' 
else 'scalene' 
end 

Let's put the commands in the file tri.m. Then we can use it as a command 

file. 

a = 0; b = 1; c = 2; tri % 0 1 2 
ans = non-existent 
a = 3; tri               % 3 1 2 
ans = non-existent 
a = 1.5; tri             % 1.5 1 2 
ans = scalene 
a = 2; tri               % 2 1 2 
ans = isosceles 
b = 2; tri               % 2 2 2 
ans = equilateral 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Switch 

When you want to perform different command for different values of an 

expression you can use switch instead of if. 

switch expression 

case value1 

 commands1 

case value2 

 commands2 

… 

otherwise 
 commands  

end 
Values are expressions or sequences of values within “{}”, i.e. a cell array. 

If the value of the expression is not among the values the kommands after 

otherwise are performed. The otherwise part may be omitted. 

Let t be the value of a throw of a dice: 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

switch t 
case {1,3,5} 
 'Odd number of dots' 
case {2,4,6} 
 'Even number of dots' 
otherwise 
 'Funny dice!' 
end 

Error handling, the try command 

Some errors make Matlab display an error message. 

a = [1]; a(3) 
??? Index exceeds matrix dimensions. 

You can catch the error, display another error message or try to correct the 

error. 

a = [1]; 
try 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

 a(3) 
catch 
 '??? Index error' 
end 
??? Index error 

You can create an error message with error(error message). Matlab 

shows where the error occured and displays the message. If such an error 

occurs in a m-file that is called between try and catch the error message 

is not displayed but the command between catch and end are performed. 

Some calculations doesn't display an error message, possibly a warning 

message or return a special error value as result. 3/0 and 2*realmax 

both return the result Inf (!) and 0/0 returns NaN (not a number). When 

you convert a value to a data type that doesn't contain that value the closest 

possible value is stored. 

int8(1000) 
ans = 127 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Loops 

To repeat the performance of some commands is common. When it is done 

for a predetermined sequence of values of a variable you use for and 

when you want to repeat while a contition is true you use while. 

for variable = expression  

 commands 

end 
The variable is called the control variabl of the loop. It is assigned the 

columns of the expression in order. The expression is evaluated once, when 

the loop is started. It usually is a colon expression, b:s:e. 

Gear box 

Let's design a gear box with a ratio as close to a given value, gear, as 

possible. You have a set of gear-wheel with from min to max cogs. Read 

gear, min and max. 

• Read min, max and gear. 

• Check that min, max and gear are greater than 0. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

• Let m vary from min to max. 

• Test the two n on each side of m/gear. 

• Note the current best m and n i.e. those that gave the least value of 

abs(m/n-gear). 

• Display the best values. 

min = input('Smallest number of cogs: ') 
max = input('Largest number of cogs: ') 
gear = input('Requested gear: ') 
bestdiff = realmax; 
if gear>0 & max>0 & min>0  
 for m = min:max 
  nprel = floor(m/gear); 
  for n = nprel:nprel+1 
   if n<min n=min; end; if n>max n=max; end; 
   diff = abs(m/n-gear); 
   if diff<bestdiff, bestdiff = diff;  
    bestm = m; bestn = n; end % if 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

  end % for n 
 end % for m 
 disp(['Best m, n and m/n are ' int2str(bestm)... 
 ', ' int2str(bestn)' and ' ... 
 num2str(bestm/bestn)]); end % if 
Suppose the comands are in file gearbox.m 

gearbox 
Smallest number of cogs: 5 
Largest number of cogs: 50 
Requested gear: 3.14159 
Best m, n and m/n are 22, 7 and 3.1429 

The function disp(string) displays its argument without string 

delimiters ('). We can with the same result write: 

 ['Best m, n and m/n are ' int2str(bestm) ... 
 ', ' int2str(bestn) ' and ' ... 
 num2str(bestm/bestn)] 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

While 

while condition 

 commands 

end 
The condition is evaluated when the while command is reached and 

after each lap. The loop is left when the condition is false. 

Loops and conditional command may contain other loops and 

conditional commands.  

The command break causes closest surrounding loop to be finished 

and execution continues after its end. The command continue causes 

the current lap in the closest surrounding loop to finish and the next lap, if 

there is some, to start. 

eps 

A measure of the precision of a numerical data type is the smallest value 

systeps, for which 1+systeps!1. 

systeps = 1; 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

for i = 1:1000 
 systeps = systeps/2; 
 if systeps+1==1 
  break 
 end 
end 
systeps = systeps*2 
systeps = 2.2204e-16 

Mathlab has a built-in variable eps with this meaning. 

eps = 2.2204e-16 

Testing—is a program correct? 

To determine if a program is correct is difficult. 

• How do you describe (specify) what the program is supposed to do? 

How do you find out the clients or customers future wishes? 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

• You can systematically test different cases/inpu data. It is seldom 

feasible to test every case. However when you find an error you can 

correct it. 

• You can reason systematically about a program and compare the 

reasoning with the specification. 

• An algorithm (from Abu Ja‘far Mohammaed ibn Mûsâ al-Khowârizmî 

who in 825 published an algebra book Kitab al jabr w’al-muqabala) is a 

detailed description of how a problem is solved in i finite number of 

steps. 

File io 

Read numbers from the file in.dat until 0 is found or the end of the file is 

reached and print the positive numbers on the file out.dat. 

You can read all values from a file to a variable with load. Vi want to 

read a number at a time. Open the file with fopen and if that is successful 

we will get a file handle, if not –1 is returned. After that we can read with 

fscanf and print with fprintf. 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

file handle = fopen(filename, access) 

returns a file handle. Access can be omitted or given with 'r' for reading, 

with 'w' for writing from the beginning of the file or with 'a' for 

wrining after the files former end (append). 

frin = fopen('in.dat'); 
frout = fopen('out.dat','w'); 
% Preferrably test that fopen not returned -1 
[x,count] = fscanf(frin,'%d',1); 
if count>0 
 while x~=0 
  if x>0 
   fprintf(frout,'%d\n',x); 
  end 
  [x,count] = fscanf(frin,'%d',1); 
  if count==0 break, end 
 end % while 
end % if 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

fclose(frin); 
fclose(frout); 

Suppose the commands are in file io.m. 

type in.dat 
2 3 5 -7 11 
13 -17 0 19 -23 29 
io 
type out.dat 
2 
3 
5 
11 
13 

Change in.dat. 

type in.dat 
2 3 5 -7 11 
13 -17 19 -23 29 
io 
type out.dat 
2 
3 
5 
11 
13 
19 
29 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

[var,no_of_elements] = fscanf(file_handle, format_string, 

requested_no_of_elements) 

returns a variable vith values from the file and number of elements read. 

Parameter format_string bescribe how data on the file shall be interpreted 

(%d denotes integer) and requested_no_of_elements denotes how many 

values that are requested. 

fprintf(filr_handle, format_string, val1, …) 

prints the values val1, … in the file according to format_string (%d\n 

denotes as integers with new line after each number). 

 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Lession 3, functions 

Funktionsfil, funktionsanrop 

in- och utparametrar, anropsin- och anropsutparametrar 

lokala, globala och persistenta variabler 

lokala funktioner 

return 

variabelt antal parameterar, skönsvärde 

slumptal 

avlusning, felsökning (debugging), programprofil 

A function is a sequence of commands in a m-file that begins with a 

function-head: 

function [outparameter1, …] = functionname(inparameter1, …) 

or 

function functionname(inparameter1, …) 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Directly after the function head you write documentation comments 

according to the rules for lookfor and help. After that are commands 

that are performed when the function is called. The function is called with: 

functionname(call_inparameter1, …) 

eller 

[call_outparameter1, …] = functionname(call_inparameter1, …) 

When the commands in the function are finished execution continues 

after the call. A function usually is put in a file with extension “.m” and the 

name of the function.  

Parameters 

Parameters and other variables in a function are local and have nothing to 

do vith variables with the same names in other functions, commandfiles or 

the command window. Exceptions are global and persistent variables. You 

can write a function so that it can be called with different number of 

callparameter different times.  



 

Staffan Romberger, CSC, KTH, 2008-09-03 

An m-file can contain more than one function. The functions after the first 

are called local functions and can be called only by functions in the same 

file. 

Let's change the kommandfile gearbox.m to a function: 

function [m n finalgear] = findgear(gear,min,max) 

% Finds the pair of cogweels that best approximate 

a given gear ratio. 

% [m n finalgear] = findgear(gear,min,max)  

% finds the best approximation m/n of gear 

% for m and n between min and max for positive 

% min, max and gear. 

if gear>0 & max>0 & min>0  

bestdiff = realmax; 

 for m = min:max 

  nprel = floor(m/gear); 

  for n = nprel:nprel+1 

   if n<min n=min; end; if n>max n=max; end; 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

   diff = abs(m/n-gear); 

   if diff<bestdiff 

    bestdiff = diff; bestm = m; bestn = n; 

   end % if 

  end % for n 

 end % for m 

 m = bestm; n = bestn; finalgear = m/n; 

else error('Indata should be positive.'); 

end  

Let's test.: 

findgear(3.14159,5,50) 

ans = 22 

[m n g] = findgear(3.14159,5,50) 

m = 22 

n = 7 

g = 3.1429 

findgear(3.14159,5,-50) 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

??? Error using ==> findgear 

Indata should be positive. 

Call inparameters are expressions. At call the values of these 

expressions are assigned to the corresponding inparameters. When the 

function finishes the values of the outparameters are assigned to the call 

outparameters. Call autparameter may be fewer than the outparameters. 

The function finishes after its last command or the last command before the 

next function has executed or when the command return is executed. 

Let's change the function so that default values for min and max is 5 and 

100 respectively. For handling of variable number of parameters we can 

use nargin, nargout, nargcheck, error, warning and 

inputname. 

function [m n finalgear] = findgear(gear,min,max) 

% Finds the pair of cogwheels that best 

approximates a given gear ratio. 

% [m n finalgear] = findgear(gear,min,max)  

% finds the best approximation m/n of gear  



 

Staffan Romberger, CSC, KTH, 2008-09-03 

% for m and m between min and max for positive 

% min, max och gear. Default value for min and max 

%  are 5 and 100 respectively. 

msg = nargchk(1,3,nargin); 

error(msg); 

if nargin<3 max = 100; end 

if nargin<2 min = 5; end 

Let' test: 

[m n g] = findgear(pi,25) 

m = 88 

n = 28 

g = 3.1429 

[m n g] = findgear(3.14159) 

m = 22 

n = 7 

g = 3.1429 

[m n g] = findgear 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

??? Error using ==> findgear 

Not enough input arguments. 

[m n g] = findgear(17,10,50,50) 

??? Error using ==> findgear 

Too many input arguments. 

You can in similar ways make the function handle different numbers of 

call outparameters. 

m = findgear(3.14159) 

m = 22 

[m n] = findgear(3.14159) 

m = 22 

n = 7 

Global variable 

Program a counter that can be incremented (with count) and inspected 

(with getcount). The counter variable has to be accessible from both 

functions. Ordinary variables are local. We will create a global variable 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

COUNTER. It is common practice to give global variables upper case 

names. In the file count.m: 

function count 

% Increments COUNTER 

global COUNTER 

if isempty(COUNTER) COUNTER = 0; end 

COUNTER = COUNTER+1; 

In the file getcout.m: 

function c = getcount 

% Returns the value of COUNTER 

global COUNTER 

c = COUNTER; 

Let's test: 

getcount 

ans = [] 

count; count; getcount 

ans = 2 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

COUNTER 

??? Undefined function or variable 'COUNTER' 

A variable you want to save between calls but only needs to be accessed in 

one function can be made persistent. 

Random walk 

Program Brownian movement with equal probability for any direction, 

movement the distance 1 per stp and start at the origin. Let brown.m be: 

function pos = brown(steps,runs) 

% Simulates Brownian movement. 

% pos = brown(steps) draws a walk of steps steps. 

% pos = brown(steps,runs) draws the final points  

% of runs walks with steps steps each. 

msg = nargchk(1,2,nargin); 

error(msg); 

if nargin==1 

  pos = b(steps,1); 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

else 

  pos = []; 

  for run = 1:runs 

    pos = [pos b(steps,0)]; 

  end 

  plot(pos(1,:),pos(2,:),'ko'); 

  pos = pos(:,end); 

end 

After brown in the same file, as a local function we insert: 

function pos = b(steps,show) 

% Simulates brownian movement and  

% plots the walk when show is true. 

pos = [0;0]; x = pos; 

for i = 1:steps 

  a = rand*2*pi; 

  pos = x(:,end)+[cos(a);sin(a)]; 

  x = [x pos]; 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

end 

if show  

  plot(x(1,:),x(2,:),'k-'); 

end 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Let's test: 

brown(100); draws the following diagram. 

 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

and brown(100,1000); draws: 

  



 

Staffan Romberger, CSC, KTH, 2008-09-03 

The area with endpoints after n steps has a radius of about 

! 

n . Command 

files may not have local functions. There is something called private 

functions. 

The function rand gives a value greater than 0 and less than 1. 

Debugging 

When your program doesn't work as expected: 

• Read the code. 

• If you find a mistake correct and test again, 

• else add trace prints to se in what order commands are performed and 

the intermediate values of some variables (remove ;, add disp or 

keyboard). 

In the editor window you can set breakpoints and step. 

The command tic starts a timer and toc returnes time since last tic.  



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Lesson 4 

Functions as parameters 

Functions are descriptions of solutions to problems where some details are 

variable. Sometimes this variation can be specified as different functions. 

Therefore we would like to have functions as parameters. 

Integration can be seen as a function of a function f(x), integration 

bounds, a and b, some requirement about steplength or precision, say n—

the number of points and an integration method, method. 

% An example of functions as parameters 

% Use different methods for integration with 

% rectangle, trapezoid och Simpson's method 

% Integrate exp(x) from 0 to 4 

function integtest 

a = 0; b = 4;  

exact = exp(b)-exp(a) 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

'Rektangle' 

area = integrera(@rektangle,@f,a,b,20) 

err = exact-area 

'Trapezoid' 

area = integrera(@trapezoid,@f,a,b,20) 

err = exact-area 

'Simpson'' method' 

area = integrera(@simpson,@f,a,b,20) 

err = exact-area 

% 

function area = integrate(method,f,a,b,n) 

area = method(f,a,b,n); 

% 

function area = rektangle(f,a,b,n) 

int = 0; 

h = (b-a)/n; 

for x =a+h/2:h:b 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

    int = int + f(x); 

end 

area = int*h; 

% 

function area = trapezoid(f,a,b,n) 

h = (b-a)/n; 

int = f(a)+f(b); 

for j = 1:n-1 

    x = a+j*h; 

    int = int + 2*f(x); 

end 

area = int*h/2; 

% 

function area = simpson(f,a,b,n) 

n = ceil(n/2)*2; 

h = (b-a)/n; 

int = f(a)+f(b); 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

for j = 1:2:n-1 

    x = a+j*h; 

    int = int + 4*f(x); 

end 

for j = 2:2:n-1 

    x = a+j*h; 

    int = int + 2*f(x); 

end 

area = int*h/3; 

% 

function y = f(x) 

y = exp(x); 

Some of the things not covered are: 

• symbolic algebra 

• sparse array 

• cell array 

• structure array 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

• more on io 

• objects 

• handle graphics 

• graphical user interfaces (GUI) 

• content and use of toolboxes 

Choose from: 

• example of symbolic calculations 

• a line breaking program 

• a bank accout program 

• polynomial approximation with GUI 

Symbolic calculation 

Let's try to find the quadrature coefficients that would be exact for 

polynomials of degree 2, Simpson's method. 
% Quadrature coefficients exact for  
% polynimial of degree 2 
syms A B C x x0 h y0 y1 y2 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

p = sym(A*x^2+B*x+C) 
s = solve(subs(p,x,x0)-y0, subs(p,x,x0+h)-y1,... 
subs(p,x,x0+2*h)-y2, A, B, C) 
q = subs(int(p,x),x,x0+2*h)-subs(int(p,x),x,x0) 
simplify(subs(q,{A B C},{s.A s.B s.C})) 

% 

p = 

A*x^2+B*x+C 

s =  

    A: [1x1 sym] 

    B: [1x1 sym] 

    C: [1x1 sym] 

q = 

1/3*A*(x0+2*h)^3+1/2*B*(x0+2*h)^2+C*(x0+2*h)-

1/3*A*x0^3-1/2*B*x0^2-C*x0 

ans = 

1/3*h*(y0+y2+4*y1) 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

Counting letters 

Let's make a program that counts the different letters in a text and print the 

alphabet sorted after number of occurences. Programs without loops are 

usually fastest. 
% count.m 
n = 10000; 
% Create a random string with n letters 
text = char('A'+floor(rand(1, n)*('Z'-'A'))); 
alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.'; 
% With array operators 
% Create an 26*n array with alphabet as columns 
tic; 
alpham = repmat(alpha, 1, n); 
% Create an 26*n arrat with text as rows 
textm = repmat(text, 26, 1); 
% Compare arrays and count matches on each row 
charcount = sum(alpham==textm,2); 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

% Sort count 
[c index] = sort(charcount, 'descend'); 
% Display alphabet in frequency order 
sortalpha = alpha(index)'; 
t = toc; 
fprintf('Time with array operations: %f\n', t); 
sortalpha 
% With loop 
tic; 
charcount = zeros(1, 26); 
for index = 1:n 
    charno = text(index)-64; 
    charcount(charno) = charcount(charno)+1; 
end 
[c index] = sort(charcount, 'descend'); 
% Display alphabet in frequency order 
sortalpha = alpha(index)'; 
t = toc; 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

fprintf('Time with loop operations: %f\n', t); 
sortalpha 
% Still another version 
tic; 
charcount = zeros(1, 26); 
for textindex = 1:n 

ch = text(textindex); 

for alphaindex = 1:26 

    if ch==alpha(alphaindex) 

      charcount(alphaindex) =... 

      charcount(alphaindex)+1; 

      break; 

    end % == 

  end % for alphaindex 

end % for textindex 
[c index] = sort(charcount, 'descend'); 
% Display alphabet in frequency order 



 

Staffan Romberger, CSC, KTH, 2008-09-03 

sortalpha = alpha(index)'; 
t = toc; 
fprintf('Time with double loop operations: %f\n', 
t); 
sortalpha 

 


