INVERSE RECONSTRUCTION

The goal of this excercise is to reconstruct an unknown heat conductivity a*(x)
inside a wall located at « € [0,1]. To reconstruct the conductivity we apply heat
fluxes on each side and measure the resulting surface temperatures uv*(0,¢) and
u*(1,t). We here assume that the temperature distribution in the wall can be
modelled by the heat equation in one space dimension i.e.

(1) ug = (a(x)*ug)., for (x,t) € (0,1) x (0,1],
with initial data u(z,0) = up and Neumann boundary values (heat flux)
(2) a(0)*us(0,8) = go, a(1)’us(1,t) = q1.

To solve this inverse problem we formulate the minimization problem

(3) min % /01 (u(O,t) - u*(o,t))2 + (u(l, 1) — u*(l,t))2 dt

a

where u* is our measured data and u solves (1) and (2).
A solution (a,u) to (3) will satisfy the following system of equations

ug = (a*ug),, for (x,t) € (0,1) x (0,1],
u(z,0) = uy,
a(0)*uz(0,t) = qo,
a(1)*uy(1,t) = qu,
@ —pr = ( me)z, for (x,t) € (0,1) x (0,1],

0)p( ) u(0,2) —u*(0, 1),
a(1)’pa(1,t) = u"(1,) — u(1,1),

1
a(x)/ Uzppy dt = 0,
0

where p is a dual variable satisfying a backward equation. The last equation in (4)
describes an optimality condition for a.

Question 0.1. Derive (4) from (3). Hint: Differentiate the lagrangian

Clu,p.a) = 1/ (u(0,£) — (0, 1) + (u(1, 1) — w*(1,))? di+

// Up — auz 2)p dx dt.

The finite element method applied to the spacial dimension gives the following
semi-discretized system for the forward and backward equations

Mu, = —-S(au+f, te(0,1]
u(0) = uy,

—~Mp;=-S(a)p+g, te€l0,1)
p(1) =0,

(5)
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where S is the stiffness matrix, M is the mass matrix, and f, g are load vectors
that includes the boundary conditions. The stiffness matrix here depends on the
conductivity distribution and the vectors u, p, f, g depends on the time.
Question 0.2. Solve system (4) with ug = 300,
100sin(5nt) 57t <7
Po=4q= 0 ,omt >
and with different (noisy) boundary measurements u(0,t) and u(1,t) given in the
files data0.mat, datal.mat and data2.mat. The file data0.mat contains mea-
surements corresponding to a = 1. All measurements contains data from 1000
equidistant time steps so you have to interpolate them to fit your time discretiza-
tion.
The easiest way to solve (4) is to start with an initial guess for the conductivity

and solve (5) with a suitable Fuler method. The conductivity can then be updated
by taking a gradient step in a(x), i.e.

1
(nil = Qp — 9an/ Ugpe dt, x € [0,1]
0

where 0 is the step length. To your help you have the function assemble which
assembles the siffness matrixz, mass matriz, and load vector depending on the coef-
ficient and the boundary conditions.

Question 0.3. Assume that u solves the stationary heat equation
(a®uz), =0, x€(0,1),
u(0) =0,
a(1)*u,(1) = g,

and we want to reconstruct a(zx) from the measurement u(1). What can we say
about this problem?



