
Chapter 5

The Monte-Carlo Method

5.1 Statistical Error

This chapter gives the basic understanding of simulation of expected values
E[g(X(T ))] for a solution, X, of a given stochastic differential equation with
a given function g. In general the approximation error has the two parts
of statistical error and time discretization error, which are analyzed in the
next sections. The estimation of statistical error is based on the Central
Limit Theorem. The error estimate for the time discretization error of the
Euler method is directly related to the proof of Feyman-Kǎc’s theorem with
an additional residual term measuring the accuracy of the approximation,
which turns out to be first order in contrast to the half order accuracy for
strong approximation.

Consider the stochastic differential equation

dX(t) = a(t,X(t))dt + b(t,X(t))dW (t)

on t0 ≤ t ≤ T, how can one compute the value E[g(X(T ))]? The Monte-
Carlo method is based on the approximation

E[g(X(T ))] �
N∑

j=1

g(X(T ;ωj))

N
,

where X is an approximation of X, e.g. the Euler method. The error in the
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Monte-Carlo method is

E[g(X(T ))]−
N∑

j=1

g(X(T ;ωj))

N

= E[g(X(T ))− g(X(T ))]−
N∑

j=1

g(X(T ;ωj)) −E[g(X(T ))]

N
. (5.1)

In the right hand side of the error representation (5.1), the first part is the
time discretization error, which we will consider in the next subsection, and
the second part is the statistical error, which we study here.

Example 5.1 Compute the integral I =
∫
[0,1]d

f(x)dx by the Monte Carlo

method, where we assume f(x) : [0, 1]d → R.

Solution. We have

I =

∫
[0,1]d

f(x) dx

=

∫
[0,1]d

f(x)p(x) dx ( where p is the uniform density function)

= E[f(x)] ( where x is uniformly distributed in [0, 1]d)

�
N∑

n=1

f(x(ωn))

N

≡ IN ,

where {x(ωn)} is sampled uniformly in the cube [0, 1]d, by sampling the
components xi(ωn) independent and uniformly on the interval [0, 1]. �

The Central Limit Theorem is the fundamental result to understand the
statistical error of Monte Carlo methods.

Theorem 5.2 (The Central Limit Theorem) Assume ξn, n = 1, 2, 3, . . .
are independent, identically distributed (i.i.d) and E[ξn] = 0, E[ξ2

n] = 1.
Then

N∑
n=1

ξn√
N

⇀ ν, (5.2)
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where ν is N(0, 1) and ⇀ denotes convergence of the distributions, also called
weak convergence, i.e. the convergence (5.2) means E[g(

∑N
n=1 ξn/

√
N)] →

E[g(ν)] for all bounded and continuous functions g.

Proof. Let f(t) = E[eitξn]. Then

f (m)(t) = E[imξm
n eitξn], (5.3)

and

E[eit
∑N

n=1 ξn/
√

N ] = f

(
t√
N

)N

=

(
f(0) +

t√
N

f ′(0) +
1

2

t2

N
f ′′(0) + o

(
t2

N

))N

.

The representation (5.3) implies

f(0) = E[1] = 1,

f ′(0) = iE[ξn] = 0,

f ′′(0) = −E[ξ2
n] = −1.

Therefore

E[eit
∑N

n=1 ξn/
√

N ] =

(
1 − t2

2N
+ o

(
t2

N

))N

→ e−t2/2, as N → ∞
=

∫
R

eitxe−x2/2

√
2π

dx, (5.4)

and we conclude that the Fourier transform (i.e. the characteristic function)
of
∑N

n=1 ξn/
√

N converges to the right limit of Fourier transform of the stan-
dard normal distribution. It is a fact, cf. [D], that convergence of the Fourier
transform together with continuity of the limit Fourier transform at 0 im-
plies weak convergence, so that

∑N
n=1 ξn/

√
N ⇀ ν, where ν is N(0, 1). The

exercise below verifies this last conclusion, without reference to other results.
�
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Exercise 5.3 Show that (5.4) implies

E[g(

N∑
n=1

ξn/
√

N )] → E[g(ν)] (5.5)

for all bounded continuous functions g. Hint: study first smooth and quickly
decaying functions gs, satisying gs(x) =

∫∞
−∞ e−itxĝs(t)dt/(2π) with the Fourier

transform ĝs of gs satisfying ĝs ∈ L1(R); show that (5.4) implies

E[gs(
N∑

n=1

ξn/
√

N)] → E[gs(ν)];

then use Chebychevs inequality to verify that no mass of
∑N

n=1 ξn/
√

N es-
capes to infinity; finally, let χ(x) be a smooth cut-off function which is one
for |x| ≤ N and zero for |x| > 2N and split the general bounded continuous
function g into g = gs + g(1 − χ) + (gχ− gs), where gs is an arbitrary close
approximation to gχ; use the conclusions above to prove (5.5).

Example 5.4 What is the error of IN − I in Example 5.1?

Solution. Let the error εN be defined by

εN =
N∑

n=1

f(xn)

N
−
∫

[0,1]d
f(x)dx

=
N∑

n=1

f(xn) − E[f(x)]

N
.

By the Central Limit Theorem,
√

NεN ⇀ σν, where ν is N(0, 1) and

σ2 =

∫
[0,1]d

f2(x)dx −
(∫

[0,1]d
f(x)dx

)2

=

∫
[0,1]d

(
f(x) −

∫
[0,1]d

f(x)dx

)2

dx.

In practice, σ2 is approximated by

σ̂2 =
1

N − 1

N∑
n=1

(
f(xn) −

N∑
m=1

f(xm)

N

)2

.
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One can generate approximate random numbers, so called pseudo random
numbers, by for example the method

ξi+1 ≡ aξi + b mod n

where a and n are relative prime and the initial ξ0 is called the seed, which
determines all other ξi. For example the combinations n = 231, a = 216 + 3
and b = 0, or n = 231 − 1, a = 75 and b = 0 are used in practise. In
Monte Carlo computations, we use the pseudo random numbers {xi}N

i=1,
where xi = ξi

n
∈ [0, 1], which for N 	 231 behave approximately as inde-

pendent uniformly distributed variables.

Theorem 5.5 The following Box-Müller method generates two independent
normal random variables x1 and x2 from two independent uniformly dis-
tributed variables y1 and y2

x1 =
√

−2 log(y2) cos(2πy1)

x2 =
√

−2 log(y2) sin(2πy1).

Sketch of the Idea. The variables x and y are independent standard normal
variables if and only if their joint density function is e−(x2+y2)/2/2π. We have

e−(x2+y2)/2dxdy = re−r2/2drdθ = d(e−r2/2)dθ

using x = rcosθ, y = rsinθ and 0 ≤ θ < 2π, 0 ≤ r < ∞. The random
variables θ and r can be sampled by taking θ to be uniformly distributed
in the interval [0, 2π) and e−r2/2 to be uniformly distributed in (0, 1], i.e.
θ = 2πy1, and r =

√−2log(y2). �

Example 5.6 Consider the stochastic differential equation dS = rSdt +
σSdW , in the risk neutral formulation where r is the riskless rate of return
and σ is the volatility. Then

ST = S0 erT−σ2

2
T+σ

√
Tν
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