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Axel Ruhe
NADA
December 4, 2008

DN2253, Numer-
ical Algebra: Large
matrices A

Reading instructions and Review Questions:
The following instructions and questions are intended to be a help when

reading the course and preparing for exam. Among the questions, some may
be answered just by reading the text, while some need some hand compu-
tation. Even if Matlab is helpful when preparing the course, only hand
calculation is needed for these questions.

Instructions refer to sections in the Demmel text book (D), the Eigen-
template book (E) or my lecture notes, Topics in Numerical linear Algebra,
(R). The questions are numbered in one sequence.

D 2.2, R 1.4.2: Linear Systems, perturbation theory. Gives bounds on how
perturbations in data give perturbations in results. How wanted quantities,
perturbations of results, can be found from computable quantities, residuals.

Q 1. Derive an expression for the perturbation of the solution x of a linear
system Ax = b when the right hand side b is perturbed.

Q 2. For which perturbation δb does δx get maximal norm, giving equality in
the perturbation bound? Use the Euclidean vector norm and singular value
decomposition!

Q 3. Derive an expression for the perturbation of the solution x of a linear
system Ax = b when the matrix A is perturbed.

Q 4. Assume that we have computed an approximate solution x̂ with residual
vector r = b−Ax̂. Show that you can find a perturbation δA, such that the
computed solution x̂ is the exact solution of the perturbed system

(A + δA)x̂ = b .

Q 5. Show that the perturbation δA of previous question can be chosen to
have ‖δA‖2 = ‖r‖2

‖x̂‖2
when we use the Euclidean norm ‖ . . . ‖2!

Q 6. How large is the smallest perturbation that makes the matrix A singu-
lar? Use the singular value decomposition to find one such perturbation!

Q 7. What is the componentwise relative condition number κCR(A).

Q 8. Mention a class of matrices for which κCR(A) is significantly smaller
than the standard condition number.
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D 2.4, R 1.4.3: Rounding errors in Gaussian elimination. This backward error
analysis is important for many numerical algorithms. The same techniques
are used for many other algorithms than Gaussian elimination. It is import-
ant to follow which intermediate quantities that may cause ill behavior of an
algorithm.

Q 9. Give a bound on the elements of the perturbation E caused by rounding
errors during Gaussian elimination A + E = LU , where L and U are the
factors computed with floating point arithmetic.

Q 10. What is the maximal growth factor during Gaussian elimination with
partial row pivoting?

D 5.2: Perturbation theory for eigenvalues of symmetric matrices. Real sym-
metric, or more properly Hermitian, matrices have a nearly perfectly condi-
tioned eigenproblem. They are also of great practical use, so it is meaningful
to study them separately.

Q 11. Let A be a real symmetric matrix and x an arbitrary nonzero vector.
Show that the Rayleigh quotient ρ(x,A) = xT Ax

xT x
is a good approximation to

an eigenvalue λ(A) of A. In what sense?

Q 12. Show that for any choice of vector x and scalar β, there is an eigenvalue
αi of A such that |αi − β| ≤ ‖Ax − βx‖2!

Q 13. Show that this distance is minimized for β = ρ(x,A)!

Q 14. Show that for a real symmetric matrix minλ(A) ≤ ρ(x,A) ≤ maxλ(A)!

Q 15. Formulate the Courant Fischer minimax theorem for real symmetric
matrices.

Q 16. Show that a perturbation E to a real symmetric matrix moves the
eigenvalues at most ‖E‖2 away. (Weyl’s theorem)

Q 17. Show that, if B = A + M where M is positive definite, then λi(B) ≥
λi(A).

Q 18. Show that λmin(QT AQ) ≥ λmin(A) where Q is an n× k matrix with
orthonormal columns.

D 6.6.1, R4.2: Krylov subspaces, Arnoldi algorithm.

Q 19. What is a Krylov subspace?

Q 20. The Arnoldi algorithm has a basic recursion

AQk = QkHk,k + R

discuss properties of the basis Qk, the reduced matrix Hk,k and the residual
R!

Q 21. Show that if θ is an eigenvalue and s is an eigenvector of Hk,k, Hk,ks =
sθ, then y = Qks gives an approximate eigenvector of A. What is the
Euclidean norm and direction of its residual r = Ay − yθ?

Q 22. Describe the Krylov algorithm.
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Q 23. Show how the Arnoldi algorithm can be derived from the Krylov al-
gorithm by means of a QR factorization.

Q 24. Show that, when Arnoldi is applied to a real symmetric matrix, one
gets the Lanczos algorithm.

Q 25. Show that the approximate eigenvectors and their residuals can be
expressed as polynomials of A operating on the startiing vector!

Q 26. What are the minimizing properties of the residual polynomials in the
real symmetric case?

E 4, E 7, D 7: Lanczos for eigenvalues.

Q 27. When do the basis vectors in the Lanczos algorithm lose orthogonality?

Q 28. What happens when Lanczos is applied to a matrix with multiple
eigenvalues?

Q 29. Describe full and selective reorthogonalization. In which cases should
one choose one or the other of these?

Q 30. Describe shift invert spectral transformation. In which cases is it ap-
plied?

Q 31. Describe implicit restart for the Arnoldi algorithm.

Q 32. How do you get approximate eigenvalues and eigenvectors with the
nonsymmetric Lanczos algorithm?

Q 33. What is the optimality properties of these approximations?

Q 34. What is break down in the nonsymmetric Lanczos algorithm?

Q 35. When is nonsymmetric Lanczos to be preferred to Arnoldi?

R 5, D 6.6.2-6: Linear systems, iterative algorithms. This chapter in D starts
with a discussion on matrices form simple finite difference approximations of
the Poisson’s equation over rectangular regions. Table 6.1 on p 277 gives an
overview. The basic iterative methods in 6.5 are mainly of historic interest.
We are interested in the Krylov subspace methods of 6.6, also described in
R 5. For matrices coming from discretizations of partial differential equa-
tions, methods that make use of the properties of the underlying problem
are the most effective, see the simple case of multigrid in D 6.9 and the short
discussion of domain decomposition in D 6.10.

Q 36. Show how the Arnoldi algorithm can be used to get approximate solu-
tions to a linear system of equations.

Q 37. Show how the GMRES (Generalized Minimal Residual) algorithm is
one variant of the answer of previous question!

Q 38. Show how the Lanczos algorithm is used to solve a system with a
symmetric matrix A!

Q 39. Show that the conjugate algorithm can be derived from the Lanczos
algorithm when the matrix A is positive definite!

Q 40. What is meant with that two vectors are A conjugate?
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Q 41. Show that the search directions pk in the conjugate gradient algorithm
are A conjugate!

Q 42. Show that the residuals rk in the conjugate gradient algorithm are
orthogonal to each other!

Q 43. Show that the residuals rk in conjugate gradient can be expressed as
a polynomial qk(A)b! What is its minimizing properties?

Q 44. Show that if A has just p distinct eigenvalues, cg will converge after
k = p iterations!

Q 45. What is a preconditioning of a matrix?

Q 46. Describe incomplete Cholesky preconditioned conjugate gradient, ICCG.
What is meant by ICCG(0) and ICCG(1)?

Q 47. Show that the nonsymmetric (two sided) Lanczos algorithm applied to
the matrix A of a linear system Ax = b leads to the Quasi Minimal Residual
(QMR) algorithm!

Q 48. Give some advantages and disadvantages of QMR compared to GMRES!

E 6: Computing the Singular Value Decomposition.

Q 49. Given a m × n matrix A. Define the (m + n) × (m + n) Hermitian
matrix

H(A) ≡
[

0 A
AH 0

]

Show that the eigenvalues of H, λ(H) = ±σ(A), plus and minus the singular
values of A and |m − n| zero eigenvalues! Which are the eigenvectors of H?

Q 50. Show that the Lanczos algorithm applied to H(A), starting at the
vector x1 = (0, vT

1 )T of order m+n, gives one Golub Kahan bidiagonalization
of A!

Q 51. Show that starting at x1 = (uT
1 , 0)T , we get another bidiagonalization.

Q 52. Describe the LSQR iteration for an overdetermined linear system

minx‖Ax − b‖2

Good Luck!


