
Lecture Notes 5

Helmholtz Equation and High Frequency Approximations

1 The Helmholtz equation

The Helmholtz equation,

∆u(x) + n(x)2ω2u(x) = f(x), x ∈ Rd, (1)

is a time-independent linear partial differential equation. The interpretation of the unknown
u(x) and the parameters n(x), ω and f(x) depends on what the equation models. The most
common areas are wave propagation problems and quantum mechanics, in which case u(x) is the
amplitude of a time-harmonic wave and the orbitals for an energy state, respectively. We will
now derive (1) for those two cases.

1.1 Derivation from the wave equation

This derivation starts from the scalar wave equation,

vtt = c(x)2∆v + F (t, x), (2)

where c(x) is the local speed of propagation for waves and F (t, x) is a source that injects waves
into the solution. Suppose we look for solutions with a single angular time frequency ω, and that
the source generates waves of this type,

v(t, x) = u(x)e−iωt, F (t, x) = g(x)e−iωt. (3)

Entering this into (2) we obtain

−ω2u(x)e−iωt = c(x)2∆u(x)e−iωt + g(x)e−iωt.

Hence, after dividing by e−iωt and reordering the terms,

∆u(x) +
ω2

c(x)2
u(x) = − g(x)

c(x)2
.

This is the Helmholtz equation (1) with f(x) = −g(x)/c(x)2 and

n(x) =
1
c(x)

,

which is the index of refraction, defined as the inverse of the speed of propagation. From (3) we
see that in this setting the solution u(x) represents the amplitude of time-harmonic solutions to
(2) at frequency ω.

Remark 1 The solution in (3) will appear if (2) is solved with zero initial condition over infinite
time. One can therefore also think of Helmholtz as a steady state version of the wave equation,
even though it is of course just the amplitude that is steady, not the oscillating factor exp(−iωt),
cf. standing waves.
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1.2 Derivation from the Schrödinger equation

The Helmholtz equation can also be obtained from the Schrödinger equation for the wave function
ψ(t, x) of a particle in quantum mechanics,

ihψt = − h2

2m
∆ψ + V (x)ψ, (4)

where h is Planck’s constant, m is the particle mass and V (x) is the potential. As before we let
ψ have a fixed oscillation in time,

ψ(t, x) = φ(x)e−ikt.

Entering this into (4) gives us

−kheiktφ(x)e−ikt = − h2

2m
∆φ(x)e−ikt + V (x)φ(x)e−ikt.

Noting that kh = E, the total energy in the quantum setting, we get after dividing by e−ikt,

h2

2m
∆φ− V (x)φ+ Eφ = 0. (5)

The function φ(x) is called a stationary state or orbital and |φ(x)|2 represents the probability
distribution of the spatial location for a particle at a fixed energy E.

In general only certain quantized values of E are possible for (5) and the problem becomes
a PDE eigenvalue problem: find both φ and E such that (5) holds. A discrete set of such
pairs typically exists. These are called bound states. For large enough E, however, there is a
solution for every E and the problem becomes the same as for the wave case, with ω2 = E and
n(x)2 = 2m(1 − V (x)/E)/h2. Mathematically, this means that the eigenvalue problem has a
continuous spectrum.

1.3 Canonical solutions

When the index of refraction is constant n(x) ≡ n a generic solution of (1) is given by the plane
wave

u(x) = Aeiωnk̂·x, |k̂| = 1,

where A is the amplitude and k̂ is the direction of propagation. Note that in the time-dependent
setting this is indeed the usual plane wave,

v(t, x) = u(x)e−iωt = Aeiωn(k̂·x−ct), c = 1/n.

Another typical solution is the circular wave, which is the wave emanating from a point source.
In three dimensions it is given by

uc(x) =
eiωn|x|

4π|x|
, x ∈ R3.

This is also the Green function for Helmholtz, since

∆uc + ω2n2uc = δ(x).

In 2D and and 1D the corresponding Green functions are uc(x) = iH0(ωn|x|)/4 (the first Hankel
function) and uc(x) = i exp(iωn|x|)/2ωn, respectively. The decay rate as |x| → ∞ of these, and
any solution with a localized source, is |x|−(d−1)/2, where d is the dimension.
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2 Properties of Helmholtz

We will here go through some general properties of solutions to (1). Since they are quite different
for interior and exterior problems we divide the discussion accordingly.

2.1 Interior problems

In interior problems (1) is set in a bounded domain Ω ⊂ Rd,

∆u(x) + n(x)2ω2u(x) = f(x), x ∈ Ω, (6)

with boundary conditions such as

u(x) = 0, x ∈ ∂Ω, (Dirichlet),
∂u(x)
∂n

= 0, x ∈ ∂Ω, (Neumann).

This formulation of the problem is well-posed for almost
all values of ω.

However, the problem is ill-posed for a discrete set of ω, which corresponds to the eigenvalues
of the operator

− 1
n(x)2

∆,

set on Ω with the specified boundary conditions. These ω correspond physically to resonance
modes of Ω. The Helmholtz operator ∆ + n(x)2ω2 is singular and there is either no solution or
an infinite set of solutions to (6).

Example 1 Consider the constant coefficient 1D case,

uxx + ω2u = f, x ∈ (0, L),
u(0) = u(L) = 0.

We note that the eigenfunctions of −∂xx with these boundary conditions are sin-functions. More
precisely, the eigenfunctions φk and eigenvalues λk are

φk(x) = sin
(
kπx

L

)
, λk =

(
kπ

L

)2

, k = 1, 2, . . .

Expanding u and f in these eigenfunctions,

u(x) =
∞∑
k=1

ukφk(x), f(x) =
∞∑
k=1

fkφk(x).

and noting that

uxx + ω2u =
∞∑
k=1

(
−λk + ω2

)
ukφk(x).

we get

uk =
fk

ω2 − λk
.

This is only well-defined if ω2 6= λk for all k where fk 6= 0. We conclude that the problem
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• Has a unique solution if ω2 6= λk for all k,

• Has no solution if ω2 = λk for some k and fk 6= 0,

• Has an infinite set of solutions if ω2 = λk for some k and fk = 0. (Then we can add φk(x)
to any solution and it is still a solution.)

In many cases when (6) models a physical situation with waves inside a bounded domain
there is in fact also some damping or absorption in the material which makes the solution well-
defined also at the resonant frequencies. Mathematically, it is therefore natural to regularize (6)
by adding a damping term,

iωαu(x) + ∆u(x) + n(x)2ω2u(x) = f(x), x ∈ Ω, (7)

where α > 0 is the damping coefficient. This formulation is well-posed for all ω. There are no
resonances, since the eigenvalues of (iωα+ ∆)/n2 have an imaginary part.

The effect of the damping term is that waves eventually die off when they travel long distances,
and energy is thus dissipating. For instance, the canonical plane wave solution is now

u(x) = Aeiω̃nk̂·xe−α̃x/2, |k̂| = 1,

where ω̃ ≈ ω and α̃ ≈ α for small α. (More precisely, ω̃ = βω, α̃ = α/β and β2 = (1 +√
1 + α2/ω2)/2.)

Remark 2 The problem with resonances in general becomes worse at higher frequencies.
First, for large (non-resonant) ω a given Ω is geometrically closer to being resonant than for

a small ω. Consider for example the constant coefficient 1D problem above. If ω is non-resonant
for the domain size L, then for some k,

πk

L
=
√
λk < ω <

√
λk+1 =

π(k + 1)
L

,

so that, for some r ∈ (0, 1),

ω =
π(k + r)

L
=

π(k + 1)

L
(

1 + 1−r
k+r

) =
π(k + 1)
L+ δL

, δL =
1− r
k + r

L.

The ω will, hence, be resonant for the nearby domain size, L+ δL, where

δL ≤ L

k
≤ 2L
k + 1

≤ 2π
ω
,

showing that for large ω a smaller perturbation of L is sufficient to become resonant.
Second, according to a fundamental theorem on elliptic operators (see e.g. Weyl and Carle-

man), in higher dimensions the eigenvalues become denser and denser as the size of them in-
creases. More precisely, let N(λ) be the number of eigenvalues (counting multiplicities) smaller
than λ. According to the theorem N(λ) = cλd/2+ higher order terms, where d is the dimension.
(In the 1D case above, for instance, N(λ) ∼ L

√
λ/π.) It follows that the number of resonant

frequencies in the range (ω0, ω0 + ∆ω) is

N((ω0 + ∆ω)2)−N(ω2
0) ∼ c((ω0 + ∆ω)d − ωd0) ∼ ∆ωωd−1

0 .

This shows that in two and higher dimensions the resonant frequencies are denser and denser for
higher frequencies, making it increasingly likely that a given ω is close to a resonant value.
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2.2 Exterior problems

In exterior problems (1) is set in an unbounded domain.
The most common example is the scattering problem and
we will focus on that here. Then the domain of the solu-
tion is outside a bounded open set Ω ⊂ Rd, describing the
scatterer. The equation is

∆u(x) + ω2u(x) = 0, x 6∈ Ω, (8)

with inhomogenous boundary conditions on Ω of Dirichlet
or Neumann type:

u(x) = g(x), x ∈ ∂Ω, (Dirichlet), (9)
∂u(x)
∂n

= h(x), x ∈ ∂Ω, (Neumann).

Note that n(x) is constant in (8). In another version of the scattering problem (8) is set in all of
Rd but n(x) is allowed to vary inside a compact set. Also note that there is no source, f(x) = 0,
and the waves are instead generated by the inhomogeneous boundary conditions g(x) or h(x).

Example 2 In the scattering problem the objective is to find the wave that is scattered off Ω
from in an incident plane wave uinc(x) = eiωk̂·x coming in from infinity.

We let utot be the sum of the known incident wave uinc and the unknown scattered wave uscat. The
total field utot = uinc + uscat satisfies (8) with homogeneous boundary conditions on ∂Ω, either
Dirichlet with g = 0 or Neumann with h = 0 depending on the physics of the waves considered.
Since uinc clearly also satisfy (8), so does uscat and on the boundary uinc(x) + uscat(x) = 0.
Consequently, we have

∆uscat + ω2uscat = 0, x 6∈ Ω, (10)

and one of

uscat(x) = −uinc(x), x ∈ ∂Ω, (Dirichlet), (11)
∂uscat(x)

∂n
= −∂uinc(x)

∂n
, x ∈ ∂Ω, (Neumann).

The problems (8, 9) and, equivalently, (10, 11) are well-posed if additional boundary condi-
tions are given at infinity, namely

lim
|x|→∞

|x|
d−1
2

(
∂u

∂r
− iωu

)
= 0, (12)
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where ∂/∂r is differentiation in the radial direction and d is the dimension. This is called the
Sommerfeld radiation condition or simply the outgoing condition. Without this condition the
solution is not uniquely determined. The point of (12) is to filter out waves that are propagating
inwards from infinity, such as a plane wave or an incoming circular wave,

uc(x) =
e−iωn|x|

4π|x|
, x ∈ R3,

(note the negative sign in the exponent) which would never satisfy (12). The solutions of (8)
with (9) and (12) are thus "outgoing", i.e they are made up of waves that propagate outwards
to infinity.

An alternative way to get uniqueness of the solution is to add damping as in the interior
problem, i.e. to replace (8) by

iωαu(x) + ∆u(x) + ω2u(x) = 0, x 6∈ Ω, (13)

for some α > 0. Then (12) is not needed. What is more, if uα(x) is the solution of (13)
with α, then one can show that u0(x) = limα→0+ uα(x) is the same outgoing solution that one
obtains using the Sommerfeld condition. This is called the limiting absorption principle, cf.
the equivalence between the entropy solution and the vanishing viscosity solution in hyperbolic
conservation laws.

2.3 Dealing with infinite domains

In the exterior problem the infinite size of the solution domain is a difficulty when approximating
the problem numerically. It is of course then not possible, for instance, to discretize the entire
domain. There are two common approaches to get around this complication, which we describe
briefly below.

1. Rewrite as an integral equation

When the exterior of Ω has constant index of refraction, as we have assumed, it is possible
to rewrite the PDE (8) as an integral equation which is set on the boundary of Ω. The
infinite domain Ωc is thus replaced by a finite domain ∂Ω. We show how this works for the
Dirichlet case, with g(x) = −uinc(x).

Let G(x) be the Green’s function for Helmholtz in d dimensions, e.g.

G(x) =

{
i
4H0(ω|x|), d = 2,
eiω|x|

4π|x| , d = 3.

Then, we can solve the single layer potential integral equation∫
∂Ω
G(x− y)ψ(y)dy = −uinc(x), x ∈ ∂Ω, (14)

for ψ(x), x ∈ ∂Ω. The scattered solution outside Ω is subsequently given by evaluating the
integral

u(x) =
∫
∂Ω
G(x− y)ψ(y)dy, x ∈ Ωc

.

Alternatively, we can solve the double layer potential integral equation

1
2
ψ(x)−

∫
∂Ω

∂G

∂n
(x− y)ψ(y)dy = −uinc(x), x ∈ ∂Ω. (15)

6 (21)

DN2255 – Numerical Solutions of Differential Equations • Spring 2012
Olof Runborg



In this case the scattered solution outside Ω is given by

u(x) = −
∫
∂Ω

∂G

∂n
(x− y)ψ(y)dy, x ∈ Ωc

.

Upon discretizing the boundary ∂Ω, both (14) and (15) lead to full linear systems of
equations for an approximation of the potential ψ.

Remark 3 Both the single and double layer formulation have resonances as in the interior
case. The equations are not well-posed for certain ω. However, by taking a linear combina-
tion of the two integral equations one avoids this problem. This is an important technique
when solving high frequency scattering problems.

2. Absorbing boundary conditions

In this approach one simply cuts off the
infinite domain and add an artificial
absorbing boundary condition (ABC)
at the new boundary, ∂Ω̃, which mod-
els the effect of the rest of the domain.
The principle of the ABC is to allow no
incoming waves into the domain, and
let all outgoing waves leave the domain
without any reflections at the artificial
boundary. This can be done in many
different ways and we will discuss it
further in the numerical section below.

3 Numerical methods for Helmholtz

We will here describe the simplest approximation of Helmholtz equation by the finite difference
method. To fix ides we consider the interior problem on the unit square in two dimensions,
Ω = [0, 1]2.

3.1 Discretization

We discretize the unit square with a uniform grid size. We let N be the number of grid cells in
each coordinate direction and set

rij = (xi, yj), xi = ih, yj = jh, h = 1/N.
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x0 x1 xN−1 xN

y0

y1

yN−1

yN

rij=(xi,yj)

We then let uij approximate the exact solution in each grid point

uij ≈ u(rij).

Note that we now approximate u(x) pointwise in rij , not its local average as in finite volume
methods. The Laplace operator is approximated by the standard 5-point formula,

∆u(rij) ≈
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij

h2
, (16)

which is second order accurate. Higher order approximations can be obtained by further Taylor
approximation of u. It leads to wider stencils. The full approximation of (1) for the inner points
of Ω using (16) is

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij
h2

+ n(rij)2ω2uij = f(rij), rij ∈ Ω, rij 6∈ ∂Ω. (17)

Boundary conditions determine the approximation when rij ∈ ∂Ω. For instance, with the Dirich-
let conditions u(x) = g(x) on ∂Ω we simply have

u0,j = g(r0,j), uN,j = g(rN,j), ui,0 = g(ri,0), ui,N = g(ri,N ). (18)

Together (17) and (18) lead to a linear system of equations for the unknowns uij in the interior
of Ω, i.e. for i, j = 1, . . . , N − 1,

Au = b, u, b ∈ R(N−1)2 , A ∈ R(N−1)2×(N−1)2 , (19)

where u contains all the {uij} and b contains the source values {f(rij)} and the boundary
conditions {g(rij)}.

Remark 4 In general the solution u will be complex because of complex valued source or bound-
ary conditions. Hence,

Au = b, u, b ∈ C(N−1)2 , A ∈ C(N−1)2×(N−1)2 .
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3.2 Errors

The errors in standard discretizations of Helmholtz are dominated by dispersion errors rather
than dissipative errors. This means that waves in a numerical solution travel at a slightly wrong
speed.

To understand how this error depends on the grid size h and the frequency ω we consider the
simplest possible case: 1D constant coefficients and the standard second order discretization, i.e.

uxx + n2ω2u = 0 and
uj+1 − 2uj + uj−1

h2
+ n2ω2uj = 0,

where uj ≈ u(xj) and xj = jh. In the continuous equation an exact solution is the plane wave

u(x) = eiωnx.

The speed of propagation for this wave is c = 1/n, for all ω. We shall now show that the discrete
equation has a similar solution, namely

uj = eiωñxj , (20)

for a perturbed ñ = n + O((hω)2), which corresponds to a perturbed speed of propagation
c̃ = 1/ñ = c+O((hω)2). Indeed, since with (20)

uj+1 − 2uj + uj−1 = eiωñxj

(
eiωñh − 2 + e−iωñh

)
= 2 [cos (ωñh)− 1] eiωñxj ,

we see that (20) solves the discrete equation if ñ is a solution to

2
cos (ωñh)− 1

h2
+ n2ω2 = 0.

Taylor expanding cos(x) = 1− x2/2 +O(x4) for small x we obtain

−(ωñ)2 +O(h2ω4) + n2ω2 = 0,

which, after division by ω2, shows that

ñ2 = n2 +O(h2ω2) ⇒ ñ = n+O(h2ω2) ⇒ c̃ = 1/ñ = c+O(h2ω2).

Hence, the numerical speed of propagation c̃ differ from the exact speed of propagation c by an
error of size O((hω)2). The total error in this second order approximation of a plane wave is
then

error =
∣∣eiωnxj − eiωñxj

∣∣ =
∣∣∣1− eiω(ñ−n)xj

∣∣∣ ≤ Cω|ñ− n| ≤ Ch2ω3.

This error is often interpreted as follows. The error when the wave travels one wave length
(period) is the error in the speed = O((hω)2). The total error is the error for one wave length
multiplied by the total number of wave lengths the wave travels inside the domain. Since the
wave length is given by λ = 2π/(nω) this number is proportional to ω. Hence, the total error is
of order O(h2ω3). This extra factor of ω is called the "pollution error".

The result above for the one-dimensional constant coefficient case is very typical for numerical
approximations of Helmholtz. In general, for a p-th order method we have the error

error ∼ hpωp+1. (21)

The same form of the error is also true for the time-dependent wave equation (for a semi-
discretzation) and higher dimensions.
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Remark 5 In higher dimensions the error ñ − n also depends on the direction k̂ of the plane
wave. This means that the numerical speed of propagation is slightly anisotropic, i.e. different in
different directions, and numerical solutions depend on the orientation of the grid.

The implication of (21) on the choice of grid sizes can be understood as follows. We note
first that

hω =
2πh
nλ

=
2π
nM

,

where
M =

λ

h
=

#grid points
wave length

.

The total error therefore scales as

error ∼ hpωp+1 ∼M−pω.

Hence, to get an accurate solution we need to take a sizable number of grid points per wave
length M . Moreover, to maintain a constant small error as the frequency ω grows, we would
need to increase M as

M∼ω1/p.

Remark 6 Conventional wisdom dictates that 10-20 grid points per wave length is needed for a
second order method at moderate frequencies.

3.3 Computational costs

To obtain the approximate solution of Helmholtz one needs to solve the linear system (19). In d
dimensions we have

Au = b, u, b ∈ C(N−1)d
, A ∈ C(N−1)d×(N−1)d

.

The computational cost of such problems depend on the structure and properties of the system
matrix A. For Helmholtz we have

• A is symmetric but indefinite — it has both positive and negative eigenvalues

• A can be arbitrarily ill-conditioned for interior problems, when ω is close to a resonance

• A is sparse: there are O(1) elements per row, hence O(Nd) elements in total,

• A’s bandwidth is of size O(Nd−1), but with appropriate reordering it can be reduced to
O(Nd−3/2) for d ≥ 2.

Recall that the computational cost for a direct solution by gaussian elimination of a banded
system is O(bandwidth2 × size). Here we therefore get

Direct solver cost : O(N2d−3 ×Nd) = O(N3d−3),

for d ≥ 2. On the other hand, the cost of an iterative solver isO(#iterations×#elements in matrix).
The number of iterations needed can depend strongly on problem type and method, but we can
safely assume it is at least N . Then

Iterative solver cost : O(N ×Nd) = O(Nd+1).

This analysis explains why direct solvers are usually used for 1D and 2D problems. (Although
we have the same formal complexity in 2D, direct methods are usually faster and more robust.)
In 3D, however, iterative methods are preferred (direct solver O(N6), iterative O(N4)).
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Remark 7 Getting the number of iterations needed to be O(N) is not easy. Standard fast meth-
ods (like multigrid) and preconditioners (like incomplete LU) fail to give fast convergence for
discretizations of Helmholtz equation, in particular for the high frequency case when N increases,
whileM ∼ N/ω is held constant. Finding good preconditioners for Helmholtz is an active research
area.1

Remark 8 As we saw in the previous section we need to take N ∼ ωM ∼ ω1+1/p to get an
accurate solution when ω grows. Since the computational cost is always greater than O(Nd) (the
number of unknowns) the cost in terms of frequency grows at least as

Cost ∼ O(ωd).

This shows why high frequency problems are very computationally expensive.

3.4 Absorbing boundary conditions

As discussed above, absorbing boundary conditions (ABCs) are used when the computational
domain is infinite or too large to discretize numerically. The domain is cut down to a manageable
size and an artificial boundary ∂Ω̃ is introduced. The ABCs are applied at this boundary. The
goal is that the reduced problem should have the same solutions as the solutions of the full
problem (restricted to the smaller domain). In wave problems, this means that all outgoing
waves should be allowed to pass the artificial boundary unaffected, in particular without being
reflected, and no waves should be allowed to enter the domain from the outside.

3.4.1 One dimension

We consider the one dimensional case and derive exact absorbing boundary conditions. Let n(x)
be constant one outside the domain (0, L) and varying in a compact subset of (0, L).

Also suppose f(x) is compactly supported in (0, L). We want to solve Helmholtz in this bounded
interval

uxx + n(x)2ω2u = f(x), x ∈ (0, L), (22)

and to construct ABCs at x = 0 and x = L. In a neighborhood of x = 0 the index of refraction
is constant one and f(x) is identically zero so u(x) solves

uxx + ω2u = 0, x ≈ 0.

Therefore,
u(x ≈ 0) = c0e

−iωx︸ ︷︷ ︸
leftgoing

+ c1e
iωx︸ ︷︷ ︸

rightgoing

(23)

1See e.g. O. Ernst and M. Gander, Why it is difficult to solve Helmholtz problems with classical iterative
methods. In I. Graham, T. Hou, O. Lakkis, and R. Scheichl, editors, Numerical Analysis of Multiscale Problems,
LNCSE volume 83, page 325–361. Springer-Verlag, Berlin Heidelberg, 2011.
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for some constants c0 and c1, i.e. a linear combination of the fundamental solutions of the ODE.
We want the ABC to accept any value of c0 but disallow a non-zero c1. We note that

ux + iωu = −c0iωe
−iωx + c1iωe

iωx + c0iωe
−iωx + c1iωe

iωx = 2c1iωe
iωx. (24)

Applying this at x = 0 and setting c1 = 0 we get

ux + iωu = 0, x = 0. (25)

Similarly, at x = L the boundary condition should force c0 = 0 and accept any c1. We get as
above

ux − iωu = −2c0iωe
iωx.

Therefore, the boundary condition is

ux − iωu = 0, x = L. (26)

We stress that (25, 26) are exact in the sense that we would get the same solution in (0, L) if
(22) was solved over all of R without (25, 26).

Remark 9 In (22) waves were generated by the source f(x). Instead one often wants to solve
the problem where there is an an incoming wave from infinity rather than a source, for instance in
the scattering problem. The boundary condition should then both model this incoming wave and
act as an absorbing boundary condition, while f(x) is set to zero. The result is an inhomogeneous
version of the ABC. For instance, from (24) we see that if the incoming wave has amplitude Ain,
instead of setting c1 to zero, we should set it to Ain. Applying (24) at x = 0 then gives the
inhomogeneous boundary condition

ux + iωu = 2iωAin, x = 0. (27)

3.4.2 Two dimensions

In higher dimensions there is no simple form like (23) for the solution close to the artificial
boundary, even if the index of refraction is constant. In general, there will be waves propagating
in every direction at each boundary point. An exact absorbing boundary condition, of the type we
derived in one dimension must therefore necessarily be nonlocal, e.g. expressed via an integral
over the boundary, cf. the integral equation formulation. Applying such nonlocal conditions
numerically is expensive. Instead, one uses various approximate ABC which are local. Since
they are not exact, they will in general cause, small, artificially reflected waves when a wave hits
the artificial boundary.

One common approach is to assume that the solution of the full problem, close to the artificial
boundary, can be approximated by a plane wave that propagates in a direction normal to the
boundary. Then the same argument as in one dimension can be used.
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Indeed if
u(x) ≈ Ceiωn̂·x,

where n̂ is the normal of the boundary, then

∂u

∂n
− iωu ≈ iωCeiωn̂·x∂(n̂ · x)

∂n
− iωCeiωn̂·x = 0.

This motivates the simplest ABC in two dimensions:

∂u

∂n
− iωu = 0, x ∈ ∂Ω̃. (28)

Remark 10 A wave generated by a localized source function, or from inhomogeneous boundary
conditions on a bounded scatterer, will propagate outwards from the source/scatterer and even-
tually, as the distance increases, it will assume the form of a circular wave coming from an
(anisotropic) point source. A circular wave with a large radius looks locally like a plane wave
propagating in the radial direction. Hence, at a distance from the source/scatterer an ABC of the
type (28) on a circular artificial boundary ∂Ω̃ = {|x| = constant} will be very accurate. For this
choice of ∂Ω̃, using (28) can also be thought of as applying the Sommerfeld radiation condition
(12) at a finite distance from the center, instead of at infinity. In fact, another way to interpret
the Sommerfeld radiation condition is as an ABC at infinity, just that as x→∞ the wave itself
decays as 1/|x|(d−1)/2, and the quantity in the left hand side of (28) must be appropriately scaled
when |x| becomes large.

Remark 11 When a plane wave hits the boundary at an oblique angle, with direction k̂ 6= n̂
the ABC (28) will give an error (an artificially reflected wave) whose size is proportional to
the difference |k̂ − n̂| for small deviations. It is thus a first order method in the difference. It is
possible to also derive higher order ABCs in this difference, which produce much smaller artificial
reflections.

Perfectly matched layers (PML) is another popular type of ABC for 2D and 3D problems.
In this approach a thin layer is added around the artificial boundary ∂Ω̃. Inside the layer the
PDE is altered such that 1) waves are damped rapidly and 2) no reflections are introduced at
∂Ω̃. At the outer end of the layer any boundary condition can be used, for instant homogeneous
Dirichlet u = 0. The change in the PDE must be done carefully so that the effective material
felt by the waves is matched at ∂Ω̃; otherwise artificial reflections are introduced.
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A typical example is as follows. Let the reduced domain be the square in two dimensions
Ω̃ = [−1, 1]2 and let n(x) ≡ 1. Suppose the support of f(x) is inside Ω̃. One then solves the
modified PDE

∂

∂x

S(y)
S(x)

∂

∂x
u+

∂

∂x

S(x)
S(y)

∂

∂x
u+ ω2S(x)S(y)u = f(x, y), (29)

where

S(x) = 1 +
σ(x)
iω

, σ(x) =

{
0, |x| ≤ 1,
(|x| − 1)2, |x| > 1.

On the outer boundary one can use Dirichlet conditions,

u(1 + δ, y) = u(1− δ, y) = u(x, 1 + δ) = u(x, 1− δ) = 0,

where δ is the thickness of the PML. Note that inside Ω̃ the parameter σ is identically equal to
zero, so that (29) reduces to just Helmholtz equation with n ≡ 1.

4 High frequency Helmholtz equation

As noted above, methods based on a direct discretization of the Helmholtz equation become
very expensive when the frequency ω is large. The cost grows at least as O(ωd) in d dimensions.
In this section we will discuss how one can approximate such high frequency solutions in other
ways.

We start by looking at the plane and circular wave solution in 3D with constant coefficients
n(x) ≡ 1 as introduced in Section 1.3,

uplane(x) = Aeiωk̂·x, ucirc(x) =
A

4π|x|
eiω|x|.

Both these solutions are of the form of a simple wave,

u(x) = A(x)eiωφ(x), (30)

where A(x) is the amplitude function and φ(x) is the phase function. For the plane and circular
wave,

Aplane(x) = A, Acirc(x) =
A

4π|x|
, φplane(x) = k̂ · x, φcirc(x) = |x|.
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The contour lines of φ(x) for these two cases look like this:

One often interprets these constant phase lines as wave fronts of a propagating wave. The
gradient ∇φ(x) is then orthogonal to the wave fronts and represents the direction of the wave.
For instance, ∇φplane(x) = k̂ and ∇φcirc(x) = x/|x|, as expected.

An important observation here is that the expressions for the solutions above are valid for
all ω, in particular also when ω →∞ (given that the same boundary data/source data is used).
Hence, the amplitude and phase functions remain smooth and non-oscillatory as ω → ∞, even
though u(x) becomes increasingly oscillatory. The only place ω appears in the solution is where
it multiplies φ(x) in the exponential. For high frequencies this is approximately true also in much
more general situations. Even for variable n(x) and other types of sources (30) is a good ansatz
for solutions. The amplitude A(x) will then depend mildly on ω, but less and less as ω → ∞.
Of course, φ(x) and A(x) will be more complicated functions in general. The interpretation of
the contour lines of φ as wave fronts are still valid though.

The idea in high frequency methods is to compute the amplitude A(x) and the phase φ(x)
numerically, instead of the full solution u(x). Since A and φ do not oscillate, and do not change
much with ω, the number of grid points needed to approximate them accurately is virtually
independent of ω as ω →∞. At high frequencies the numerical computations are therefore much
less expensive than in direct methods where u(x) is approximated.

Remark 12 There are of course many situations where (30) is not sufficient to describe the
solution. It only describes one wave. In general there are many crossing waves, all depending on
boundary conditions and sources. In general a sum of simple waves, each with different amplitude
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and phase, describes the solution better

u(x) =
∑
j

Aj(x)eiωφj(x). (31)

This description essentially only breaks down at a small set of points, where waves focus. In
these notes, however, we concentrate on how to compute one of the waves.

4.1 Eikonal and transport equations

In this section we derive PDEs for the amplitude A(x) and phase φ(x) in the limit as ω → ∞.
Upon entering (30) into the Helmholtz equation (1) with f = 0 we obtain

0 = ∆(Aeiωφ) + n2ω2Aeiωφ

=
[
(A(n(x)2 − |∇φ|2)ω2 + (2∇A · ∇φ+A∆φ)iω + ∆A

]
eiωφ.

When ω � 1 the first two terms must vanish. This gives the two PDEs for φ and A, the eikonal
and transport equations

|∇φ| = n(x), "eikonal equation" (32)
2∇A · ∇φ+A∆φ = 0, "transport equation". (33)

If (32) and (33) hold for φ and A one can show that the exact solution u(x) is well approximated
by (30) at high frequencies,

u(x) = A(x)eiωφ(x) +O(1/ω).

The eikonal equation is a nonlinear time-independent PDE which belongs to a class of PDEs
called Hamilton–Jacobi equations. The transport equation, on the other hand, is a linear equation
with variable coefficients given by φ(x). Both equations are hyperbolic.

We note that solving the pair (32) and (33) does not involve ω at all. The cost of computing
A(x)eiωφ ≈ u(x) is therefore independent of ω and for sufficiently large ω it is a more efficient
approach than a direct solver. This is also the regime where it is accurate; the error is proportional
to 1/ω.

Example 3 For constant coefficients n(x) = 1 we saw that the phase of a circular wave was
φ(x) = |x|. This solves the eikonal equation since

|∇|x|| =
∣∣∣∣ x|x|

∣∣∣∣ = 1 = n(x).

4.1.1 Boundary conditions for φ(x)

For high frequency wave problems it is natural to prescribe a wave front Γ of the simple wave in
(30). This will then be a boundary of the problem. Since φ(x) =constant defines wave fronts,
we set

φ(x) = 0, x ∈ Γ.

For example, if we want to find a solution where a plane wave comes in from infinity we would
use a linear Γ, corresponding to one fixed wave front of the plane wave. If the wave propagates
in the direction of the x-axis this would be Γ = {(x, y) : x = 0} and the boundary condition
would be

φ(0, y) = 0.
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If we are looking for a wave emanating from a point source, then Γ is just a point. If the source
is in the origin we would use

φ(0, 0) = 0.

Note that in infinite domain problems there is no need for complicated ABCs as for Helmholtz,
since the characteristics of the eikonal equation would be outgoing, meaning that no boundary
condition should be prescribed at the artificial boundary.

4.2 Rays

One way to solve the eikonal equation (32) is with the method of characteristics. The character-
istics2 for the eikonal equation are given by the ODEs

dx(t)
dt

=
1

n(x(t))2
p(t), (34)

dp(t)
dt

=
∇n(x(t))
n(x(t))

. (35)

Here x, p ∈ Rd in d dimensions. The curve x(t) ⊂ Rd is called a ray as it corresponds to a ray
of light when Helmholtz models the high frequency Maxwell equations (electromagnetic waves).
The vector p(t) is called the slowness. It has length 1/c(x) = n(x) (see below) and points in the
direction of the ray — it is parallel to dx/dt by (34). The rays originate from the initial wave
front Γ, and start in a direction orthogonal to it, giving the initial data

x(0) ∈ Γ, p(0) ⊥ Γ, |p(0)| = n(x(0)).

The most important property of the rays are that

φ(x(t)) = t if φ(x) = 0 on Γ. (36)

Hence, by solving the ray equations (34) and (35) one obtains the value of φ along the ray.
Another property is that

p(t) = ∇φ(x(t)). (37)

Since p points in the direction of the ray, this shows that the rays are always orthogonal to the
iso-phase lines, i.e. to the wave fronts.

2In the context of Hamilton–Jacobi equations like the eikonal equation they are actually called bi-
characteristics.
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Moreover, together (32) and (37) show that |p(t)| = n(x(t)) and then by (34),∣∣∣∣dxdt
∣∣∣∣ =

1
n(x)2

|p| = 1
n(x)

= c(x),

which shows that the speed of the ray is precisely the speed of propagation of the waves.
Let us now derive (36) and (37). By taking the gradient of the eikonal equation (32) we get

∇|∇φ| = ∇n(x) ⇒ D2φ
∇φ
|∇φ|

⇒ D2φ
∇φ
n(x)

= ∇n(x).

Then, upon also using (34) and (35),

d

dt
(∇φ(x(t))− p(t)) = D2φ

dx

dt
− ∇n

n
= D2φ

p

n2
− D2φ∇φ

n2
= −D

2φ

n2
(∇φ(x(t))− p(t)).

Since p(t) = ∇φ(x(t)) is true at t = 0 it follows that it is true for all t > 0 by the uniqueness of
solutions to ODEs. This shows (37). Finally, (36) holds since

dφ(x(t))
dt

= ∇φ(x(t)) · dx(t)
dt

=
1

n(x(t))2
p(t) · p(t) =

|p(t)|2

n(x(t))2
= 1.

4.3 Alternative interpretation of φ

Suppose φ solves the eikonal equation

|∇φ| = 1
c(x)

, φ(x) = 0, x ∈ Γ. (38)

As we have seen, φ can then be interpreted as the phase of a high frequency wave with initial
wave front Γ. Another interpretation is as follows:

φ(x) is the shortest travel time to the boundary Γ from x if the local speed is c(x).

The rays in (34) and (35) correspond to the optimal paths to Γ which have the shortest travel
time. With this interpretation there are many other applications for the eikonal equation in
areas like path planning, visibility detection, optimal control, shape from shading and general
front propagation.

To understand this interpretation suppose φ(x) is smooth at x. Moreover assume x(s) is an
optimal path from Γ and s is the arc length parameterization. Then since the local speed is c(x),

1
c(x(s))

=
d

ds
φ(x(s)) = ∇φ(x(s)) · dx

ds
= |∇φ(x(s))| cos(θ),

for some angle θ. Hence,

|∇φ(x)| ≥ 1
c(x)

. (39)

On the other hand, if φ(x) is the shortest travel time from x then the shortest travel time from
x+ ∆x is at most φ(x) plus the time to travel along a straight line between x and x+ ∆x,

φ(x+ ∆x) ≤ φ(x) + |∆x|
∫ 1

0

1
c (x+ s∆x)

ds = φ(x) +
|∆x|
c(x)

+O
(
|∆x|2

)
.
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Figure 1. Two examples of solutions to the eikonal equation: a square and two obstacles. Isolines
of φ(x) plotted; bold line indicates Γ.

This holds for all ∆x = εŝ where |ŝ| = 1. Hence,

sup
|ŝ|=1

φ(x+ εŝ)− φ(x)
ε

≤ 1
c(x)

+O(ε),

and upon taking the limit ε→ 0,

1
c(x)

≥ sup
|ŝ|=1

ŝ · ∇φ(x) = |∇φ(x)|.

Together with (39) this shows that φ must satisfy the eikonal equation (38).

Example 4 Consider the example in Figure 1, left. Here Γ is the boundary of the square [0, 1]2

and we seek φ inside the domain. The local speed is constant c ≡ 1. The fastest paths to Γ are
obviously straight lines orthogonal to the nearest side. The shortest travel time is the distance of
these paths. On the diagonals of the square there are two optimal paths and in the center of the
square there are four optimal paths. Everywhere, however, the shortest travel time is well-defined,
namely

φ(x, y) = min(x, 1− x, y, 1− y).

This means that φ(x) is continuous but ∇φ(x) is not continuous, and the solution has "kinks"
along the diagonals. Note that that |∇φ| = 1 and φ(x, y) = 0 on Γ.

Example 5 A more complicated example is shown in Figure 1, right. Here Γ is the bold line
{x = 0} on the left side. The speed c(x) is equal to one everywhere, except in the black boxes
where it is zero (or very small). The fastest path to Γ from a point unobstructed by boxes is
again a straight line orthogonal to Γ. The optimal path from a point behind one of the boxes is
different, however. The initial part of that path is a straight line to the nearest box corner, hence
the curved iso lines. If the point behind the box is precisely in between the two corners, there are
two equally fast paths, and therefore, again, φ(x) has a kink, and ∇φ has a discontinuity.
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The kinks in the examples above are in fact a generic feature of solutions to the eikonal
equation. Even for smooth data and Γ the gradient ∇φ will in general develop discontinuities
("shocks") in finite time. In the wave setting these kinks means that the exact solution is no
longer a simple wave of the form (30) but should rather be written as a sum of simple waves like
(31). Hence, the model in (30) breaks down. This happens typically when a wave which starts
out as a simple wave is refracted and focused.

4.4 Numerical methods for eikonal equation

We discuss three different ways to solve the eikonal equation.

4.4.1 Ray tracing

Ray tracing means solving the ray equations (34) and (35). Any numerical ODE-method can be
used. The phase is then given by the relation (36). Pros and cons:

+ Simple.

+ Gives relevant solutions also for multivalued phases like in (31), where the eikonal equation
breaks down.

– Only gives φ(x) along the ray, not on a uniform grid.

4.4.2 Fast marching method

In the fast marching method the eikonal equation is discretized on a grid. In two dimensions we
can take

rij = (xi, yj), xi = ih, yj = jh, h = 1/N,

and let φij approximate the exact solution in each grid point

φij ≈ φ(rij).

The grid is considered as a graph, where the grid points are nodes which are connected by edges
to their closest neighbors. Each edge is assigned a travel time value based on the local speed
c(x). The fast marching method then uses the Dijkstra algorithm from computer science to find
the shortest path in this graph. (Recall that φ(x) is precisely the shortest travel time to the
boundary.) For details see

http://math.berkeley.edu/∼sethian/2006/Explanations/fast_marching_explain.html
Pros and cons:

+ Efficient. The computational cost is O(Nd logN) if there are N grid points in each coordi-
nate direction. Because of this it is something of an industry standard for solving problems
involving the eikonal equation.

– Complicated to implement.

– Standard version is only first order accurate. Higher order methods possible but are even
more complicated.
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4.4.3 Time-dependent version

A third approach to solving (32) is to first convert it to a time-dependent problem

|∇φ| = n(x) ⇒ φt + |∇φ| = n(x).

Then use numerical methods for time-dependent Hamilton–Jacobi equations and solve it to
steady state, φt = 0. The simplest such scheme is the Hamilton–Jacobi version of the Lax–
Friedrichs scheme. In two dimensions, let φnij approximate the time-dependent phase φ(t, x, y),

φnij ≈ φ(tn, xi, yj), tn = n∆t.

The Lax–Friedrichs scheme is then

φn+1
ij =

1
4
(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1

)
−∆tH

(
xi, yj ,

φi+1,j − φi−1,j

2h
,
φi,j+1 − φi,j−1

2h

)
,

where
H(x, y, φx, φy) =

√
φ2
x + φ2

y − n(x, y).

The time to reach steady state is O(1) which means that the number of time steps is O(1/∆t) =
O(N), with a fixed CFL number h = λ∆t. Then the total cost is O(Nd+1), since each step
involves O(Nd) operations. Pros and cons:

+ Easy to implement.

+ Quite straightforward to do higher order.

– Inefficient – the complexity is much higher than for fast marching.

– There is no guarantee that φ(t, x) always converges to the time-independent solution as
t→∞.
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