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Lecture notes Feb 18, 2008 

 

Non-Reflective Boundaries: termination of a transmission line 

 

The telegrapher’s equation 
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models an electric transmission line with capacitance c [F/m] and inductance l [H/m]. The 

voltage is v and the current I. It is a linear hyperbolic system 
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with wave speeds λ+, λ- = +-c0, right eigenvectors r+,r-, characteristic variables w+,w- . 
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so the right- and left-running waves are 
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The line is terminated by an impedance Z, so v = ZI at x = L. If we choose Z = Z0, w- is zero 

and there are no left-running waves: a perfectly non-reflective condition. In this case, infinite 

extension of the line to the right can be replaced by a boundary condition. 
 

Implementation of condition at xN 

The ghost cell implementation, for a three-point scheme, so only one ghost cell: N+1. 

w- is set to the incoming wave amplitude (0 here). w+ is computed from inside the 

computational domain by  

 

a) characteristic extrapolation (Draw a sketch!) 
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b) space extrapolation 
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a) is equivalent to extending the computational domain by one cell and using an upstream 

scheme for w+ in the last cell. 
b) the idea is that the solution must be smooth if there is no reflection. 

v(x,t) i(x,t) 
Z 



DN2255             Differential Equations II Spring 08        p. 2 (3)   

Nada, CSC JOp 

Equation and dispersion relation  

We consider now scalar linear constant coefficient equations 

 0),( =qDDP xt  

where P(u,v) is a polynomial in u and v. It is satisfied by the exponential function of x  

and t,  
ikxteq += λ
, if λ and k satisfy the dispersion relation 
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For hyperbolic equations we often write iω for λ. For systems, the dispersion relation is the 
characteristic equation of the system matrix. 

 

Ex.  

1. The transmission line equation above : rrq
)( 0 xtcikikxti ee

++ == ω gives 

 0)/(22 =+− lckω or lck /±=ω  

from which the phase speed c0 is read off: lckc /1/0 ±== ω . Such waves are called  

non-dispersive because the speed does not depend on the wave-number. 

 

2. The heat equation, 

 xxt qq =  

has dispersion relation 2k−=λ , so the waves do not travel: they dissipate, i.e. the amplitude 

decays on the spot, faster for high wave numbers – the effect exploited in the multi-grid 

algorithm for elliptic problems. 

 

3. The Schrodinger equation of quantum mechanics, for constant potential V 

 ψψψ Vi xxt −=  

has dispersion relation Vk −−=− 2ω , phase speed kVkkc //0 +== ω  - dispersive 

indeed. 

 

Equation and vonNeumann amplification factor G 
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So: expand the expression as a power series in ∆t, interpret as terms in a differential equation 
by the equivalence xikt ∂∂≡∂∂≡ /,/λ    

 

Example 

The one-sided scheme, advection equation qt + aqx = 0, a > 0 
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First, not so successful attempt: 
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Expand the “dispersion relation” as power series in ∆t: 
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So, the upstream scheme is a first order approximation to the advection equation, as it should, 

and a second order approximation to 
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This does not clarify things much, because the highest order time derivative is now multiplied 

by the infinitesimally small ∆t.  
 

Second, successful attempt: 

Expand λ as power series in ik. This means looking for a differential equation of the form 
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We have 
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Taylor expansions of Taylor expansions tax one’s patience and accuracy. Symbolic algebra 

systems like Maple (e.g. inside Matlab) will perform power series expansions (in terms of ∆t) 
in a second, and using  Dx for d/dx = ik Maple expands λ into 
 

Dtexp = 

(-Dx*a*dt+(1/2/s*Dx^2*a^2-1/2*Dx^2*a^2)*dt^2+(-

1/6/s^2*Dx^3*a^3+1/6*Dx^3*a^3/s-1/3*Dx^3*a^3*(-1+s)/s)*dt^3)/dt 

  

which needs cleaning up … the simplify function does not help, so manually: 

Carry out the division by dt and factor out common factors: 

 
Dtexp = 

-Dx*a+ ... 

1/2*dt*a^2*(1/s-1)*Dx^2 + ... 

1/6*dt^2*a^3(-1/s^2+1/s-2*(-1+s)/s)*Dx^3 

 

so the modified equation becomes, to second order 
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which says that: 

1. the upstream scheme is a first order, dissipative approximation to the advection equation, 

2. σ < 1 is necessary for the second derivative term to be dissipative 
3. the third derivative term does not provide much information. 

 

so it turns out we need compute only the first term of the truncation error. But of course one 

has to know which power of ∆t that is … 

 

 

 


