
Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 1(8)
CSC/KTH JOp Overview

Contents

Important concepts, definitions, etc.. 2
Exact solutions of some differential equations... 3
Estimates of solutions to differential and difference equations.. 3
Models .. 5
Convergence of Euler’s method ... 6
How to test your PDE solver - some hints.. 7
Method of Manufactured Solutions.. 7

Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 2(8)
CSC/KTH JOp Overview

Important concepts, definitions, etc.

Convergence: Numerical solution tends to exact solution as stepsizes tend to zero.

Well-posedness (Hadamard):
If the solution of a mathematical problem
 • exists
 • is unique, and
 • depends continuously on data,
the problem is called well-posed.
Unique: We accept the existence of several but isolated solutions, like the roots of a
polynomial, but not several infinitely close solutions, like solutions to a singular linear
system with a compatible right hand side.
Continuous: We have to define
 • a metric, i.e. for PDE's, norms of the functions appearing,
 • which perturbations are "allowed".
For initial value problems we shall consider only perturbations to the initial data.

d'Alembert solution: to wave equation utt= c2

uxx: u(x,t) = f(x – ct) + g(x + ct)

Traveling wave: solution of the form u(x,t) = v(x – st) with s a constant.

Jacobian matrix

of a function f U –> V, U,V finite dimensional normed linear spaces, dim(U) = n,
dim(V) = m, is the matrix of partial derivatives:
 J(x) = {dfi/dxj}, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Note - be careful ...
If in a given problem there are several mappings, there are also several different
"Jacobians". As an example, take the boundary value problem for the first order system,
 y' = f(y), G(y(0),y(1)) = 0, y in Rn.
The initial value problem for the ODE defines a mapping from Rn to Rn which we may
call F: y(1) = F(y(0)). Linearizing this equation gives an nxn Jacobian dF/dy(0) which
is of course related to but quite distinct from df/dy !

Courant number

c ∆t/∆x (wave speed c, time step ∆t, space step ∆x)

Iteration

• Let P be a matrix with spectral radius ρ(P). Then, iff ρ(P) < 1, the sequence defined by
x(n+1) = Px(n) + c converges to x(*) = (I – P)–1c for all initial values x(0). Equivalently,
the series I + P + P2 + P3 + ... converges to (I – P)–1
• For all operator norms || . ||, ||P|| ≥ ρ(P).
• If ||P|| ≤ R < 1, ||x(n) – x(*)|| ≤ R/(1–R) ||x(n) – x(n–1)||

Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 3(8)
CSC/KTH JOp Overview

Exact solutions of some differential equations

Linear, constant coefficients

 dy/dt = Ay + f(t)
 f = 0: y(t) = exp(At) y(0)

Duhamel’s formula

y(t) = eAt y(0) + e
−Aτ

f(τ)dτ
0

t

∫












Computation of eA, or other matrix function f(A)

1) If A is diagonalizable, AS = SD, D = diag(λi), f(A) = S f(D) S
–1

 where

f(D) = diag(f(λi)).

2) eA =
Ak

k!
k= 0

∞

∑ which converges for any A. Can use “argument reduction” to require

fewer terms in the sum: exp(A) = [exp(A/2)]
2
 etc.

Rule: exp(A+B) = exp(A) exp(B) iff AB = BA.

Example

Non-diagonalizable A, a Jordan block:

A =

λ 1 0 ...0

0 λ 1 ...0

0 0 ... 1

0 0 ... λ



















= λI+ S;S p = 0 when p > n, eA = eλI+S = eλeS = eλ
1
j!
S
j

j=0

n

∑

Estimates of solutions to differential and difference equations

• Cauchy-Schwarz inequality. Let x, y be elements in an innerproduct space. Then
 |(x,y)| ≤ ||x|| ||y||

where ||x||
2
 = (x,x)

• Triangle inequality: ||x + y|| ≤ ||x|| + ||y||

• Completing the square: If a > 0, then a||x||
2
 + 1/a ||y||

2
 ≥ 2|(x,y)|

• 1 + x ≤ ex for all real x, and ex ≤ 1/(1 – x) for x < 1. Equality only for x = 0.
• ||exp(A)|| ≤ exp(||A||)

Positivity Theorem (folklore ?)
Let yt = f(y) and f be Lipschitz in the open domain D, and y(0) in D. The outward
normal n(x) to the boundary ∂D exists, except for a finite number of isolated points.
Then y(t) never leaves the closure of D, if f(x) • n(x) ≤ 0 on ∂D.
• Corollary
Let y satisfy the differential inequality y´ ≤ f(y), f Lipschitz-L, and z be a solution to
z´= f(z) with z(0) ≥ y(0). Then y(t) ≤ z(t) for t > 0.

Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 4(8)
CSC/KTH JOp Overview

• Logarithmic norm of a matrix

 µ[A]= lim
ε→0+

|| I + εA || −1
ε

• Perturbation estimate
 y´ = f(y), y(0) = y0;
 z´ = f(z) + g(z,t), z(0) = z0,
Assume a priori the existence of a domain D with y(t), 0 ≤ t ≤ T, and z0 in D, such that f
is Lipschitz-L in D.
The difference e = y – z satisfies the differential inequality
 ||e||´ ≤ µ(t)||e|| + ||g(z(t),t)||, ||e(0)|| = ||y0 – z0||
where µ = max

x∈D
µ J(x)[](), and J is the Jacobian ∂f/∂x.

The inequality holds for t ≤ T* where T* = min(T,T
+
) and T

+
 is the largest t for which

the inequality guarantees that z(t) is in D.

Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 5(8)
CSC/KTH JOp Overview

Models

The following models are all discussed in class. Note that the RHS (all zeros here) may
well be some source terms Q(x,t,u). These do not in general influence the most
important features of the equations.

Conservation laws, 1D (+ time)
 ut + qx = Q, q = q(x,t,u,ux) = flux function, Q = source term
Convective flux
 q = a(x,t,u)u, a = advection velocity
Diffusive flux
 q = – C(x,t,u)ux
Fourier's law of heat conduction (u = temperature)
 q = – k ux, k = heat conductivity
Fick's law of diffusion (u = concentration)
 q = – Dux, D = diffusion coefficient

Hyperbolic Parabolic Elliptic

Wave operators with wave

speed c:

One-way / convection
 ut + cux = 0

Standard
 utt – c2uxx = 0

As first order system
 ut – c2 px = 0

 pt – ux = 0

Maxwell
 ε Et – Hx = 0,
 µ Ht – Ex = 0
 with c = 1/√εµ
Inviscid Burgers
 ut + u ux = 0
Schrödinger
 i ut – uxx – V(x)u = 0
Shallow water
ht + (hu)x = 0

(hu)t + (hu2 + 1/2h2g)x = 0

Convection-Diffusion
 ut + aux – (Dux)x = 0

Heat, Diffusion
 ut – α uxx = 0

Burgers
 ut + u ux – εuxx = 0

Laplace operator ∆
 ∆u = uxx + uyy

Poisson equation

 ∆u = f(x,y)

Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 6(8)
CSC/KTH JOp Overview

Convergence of Euler’s method

Assume

The initial value problem y´= f(y), y(0) = c, t ≥ 0.
1) f is Lipschitz-L. The existence of smooth solution y(t) on [0,T] follows. Let
 R = max ||y´´(t)|| for t ≤ T.

2) Initial values y0(h) are chosen such that ||E0|| = || y0(h) − c ||→ 0 as h→ 0
The Euler scheme is

 yn+1 = yn + hf(yn), (1)
and the exact solution satisfies

 y(tn+1) = y(tn) + hf(y(tn)) + 1/2 h
2
 r(tn) with ||r|| ≤ R (2)

Note The mean value theorem in the form f (t + s)ds
0

h

∫ = hf (t +θh)

or a remainder term of the type in the Taylor series

 () ())(
)!1(

)(
!

)(1
1

0
htf

n

h
tf

j

h
htf n

nn

j

j
j

θ+
+

+=+ +
+

=
∑

has no simple generalization to vector valued functions. An integral form is required,

)(max
2

||)()()(||

)()()()()(

2

0 00

ξ
ξ

′′≤′−−+⇒

⇒













+′′+′=+′=−+

+≤≤

∫ ∫∫

yyyy

yyyyy

htt

h sh

h
ththt

dsdppttdssttht

Introducing the global error En = yn – y(tn) the subtraction of (2) from (1) gives

 En+1= En + h(f(yn) – f(y(tn)) – 1/2 h
2
 r(tn)

and for the norm en = ||En||, using the Lipschitz continuity,

 en+1 ≤ en + hLen + 1/2 h
2
R = (1 + hL)en + 1/2 h

2
R

Lemma (Exercise: Prove!)

 If un+1 = Aun + B, u0 = b, un = bA
n
 + B/(1–A) (A

n
–1)

It follows that

en ≤||E0 || (1+ hL)n + hR
(1+ hL)n −1

L
≤||E0 || enhL + hR

enhL −1
L

=

=||E0 || eLtn + hR
e
Ltn −1
L

and if E0 = 0 (easy!) the error is O(h).

Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 7(8)
CSC/KTH JOp Overview

How to test your PDE solver - some hints

We assume that the code works and produces results that seem stable on the first test
case you have devised. So you are very happy ... but much remains before the solver can
be considered tested. In a KTH course we will focus just on the numerics for the given
simple equations whereas industrial validation of a code also must address the models -
more or less heuristic - for the physical phenomena such as turbulence, combustion,
conditions at "infinite" boundaries, etc.

There will always be physical parameters in the model, like gravitational acceleration,
viscosity coefficients, etc., and of course the parameters of the discretization and
method - stepsizes, tolerances, number of multi-grid levels, …
The basic idea of testing is to change parameters and verify that the numerical

results are consistent with what you know about the model and method.
Here are a few suggestions.

1. Choose parameters that allow an analytical solution. Ex: constant material
properties, no gravity, no viscous forces, periodic conditions, …

2. Check that the solutions converge as ∆x, ∆y , ∆t –> 0. If you know what the

order of consistency should be, say p, check that by looking at ||uh – u2h|| / ||u2h

– u4h|| which should be approximately (1/2)
p
.

3. Check that tolerances, artificial diffusion, etc., do influence the solution;
Caveat: It may be hard to guess what the natural range for these parameters is

("Is 10
–6

 small ?? Is Re = 1000 a large Reynolds number ? … ")
4. The order of consistency may be hard to check, especially if it is more than two.

Always include coding for non-zero source functions for all the equations, PDE
and boundary conditions alike. Then it is always possible to compute the source
functions for any prescribed exact solution. This is sometimes called the MMS -

Method of Manufactured Solutions

Recipe:
Let the equations be
 P(∂t, ∂x, ∂y, u, x, y, t) = f(x,y,t)
with boundary conditions
 B(∂x,∂y, u, x, y, t) = g(x,y,t)
and initial conditions
 u = U
This problem has the solution w(x,y,t) if f and g are computed from w as
 f(x,y,t) = P(∂t,∂x,∂y,w(x,y,t),x,y,t)
 g(x,y,t) = B(∂x,∂y, w(x,y,t), x, y, t)
 U(x,y,0) = w(x,y,0)

Of course, it is a chore to compute P(…) etc. Choosing w as a linear combination of
sines, cosines and exponential functions has several advantages:
 • Derivatives are easy
 • It is easy to change the spatial and temporal rates of change to see how the grid
 resolution influences the solution.

Numerical Analysis and Computer Science 2D1255 Spring 2007 p. 8(8)
CSC/KTH JOp Overview

Example
As an example of the source function method, consider the incompressible Navier-

Stokes equations driven by body forces (F,G) on a square [0,1]
2
. At y = 0 and 1, u = v =

0, at x = 0, u(y) = U(y), v = 0; at x = 1: v = 0, ∂u/∂x = 0.

ux + vy = 0

ut + uux + vuy + px = Re−1 uxx + uyy()+ F
vt + uvx + vvy + py = Re−1 vxx + vyy()+G









Write the code for

ux + vy = D(x, y, t)

ut + uux + vuy + px = Re−1 uxx + uyy()+ F(x, y,t)

vt + uvx + vvy + py = Re−1 vxx + vyy()+G(x, y,t)









u(x,0,t) =U (x,0,t);v(x,0,t) = V (x, y, t)

u(x,1,t) =U (x,1, t);v(x,1,t) = V (x,1,t)

u(0, y, t) =U(0, y,t);v(0, y,t) = V(0,y,t);

∂u /∂x(1, y,t) =∂U /∂x(1, y,t);∂v /∂x(1, y,t) = ∂V /∂x(1,y, t);

so, as an example, for

 U(x,y,t) = A sin at sin bx sin cy
 V(x,y,t) = B sin dt sin ex sin fy
 P(x,y,t) = C sin gt sin hx sin iy

we need only choose

 D = Ab sin at cos bx sin cy + Bf sin dt sin ex cos fy

 F = Ut + UUx + VUy + Px – Re
–1

 (Uxx + Uyy)

 G = Vt + UVx + VVy + Py – Re
–1

 (Vxx + Vyy)

for the exact solution to be u = U, v = V.
Caveat - For the NS equations solved by the projection method we use ∂p/∂n = 0 as
boundary condition but that must also be changed to include a source if we are to
specify an arbitrary P !

