TMA372/MANG660 Partial Differential Equations TM, E3, GU
2001-12-18. Solutions

1. a) Derive the fundamental solution for the initial value problem
w(t) + a(®)u(t) = f(t), 0<t<T, u(0) = wg.
b) Prove the stability estimates
) al)>a>0 = |u(t)] <e *|uo| + 5(1 - e*at) maxo<s<t | £(5)]
i) at)20 = |u(t)| < |uo| + fy |f(s)|ds.

solution. See lecture notes (chapter 9).

2. Show that for a(t) > 0, and for N = 1,2,..., the piecewise linear approximate
solution U for the problem 1 satisfies the a posteriori error estimate

lu(tn) —Un| < [Iglfux] |k(U +aU—=f)|, k=kyp, fort,_1 <t<tp.

solution. See the course book; chapter 9 (a simple version of theorem 9.2).

3. Prove a priori and a posteriori error estimates, in the energy norm [[v||% =
[|v'||? + a]|v||?, for the ¢G(1) approximation of the boundary value problem

—u"(z) + u'(z) + au(z) = f(z), 0<z<1, w0)=u()=0, a>0.

Solution:

(a) The Variational formulation:

(Multiply the equation by v € V, integrate by parts over (0, 1) and use the boundary
conditions.)

1 1 1 1
(1) FindueV: /u'v'dm—|—/ u'vdac—}—/ auvdxz/ fvdz, YveV.
0 0 0 0
cG(1):
(2)
1 1 1 1
Find U € V, : /U'v'dx—l—/ U'vdm—}—/ aUvdxz/ fodz, Vv €V,
0 0 0 0
where

Vi, := {v : v is continuous piecewise linear in (0, 1), v(0) = v(1) = 0}.

From (1)-(2), we find
The Galerkin orthogonality:

1

(3) / ((u—U)'v'—}—(u—U)'v+a(u—U)v)dw=0, Yo € V.
0

We define the inner product (-,-)g associated to the energy norm to be

1
(v,w)g = / (W'w'" + avw) dz, Yv,w e V.
0

1
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A priori error estimate:

! ! 1 (' d 1
2 _ 11 — ! = — (2 = e} =
||e||E—/0 (e'e —f—aee)dw—{/o eed$—2/0 dx(e )d:c 2[6 lo 0}

:/0 (e’e'+e'e+aee)dw=/0 (e'(u—U)'+e'(u—U)+ae(u—U))d:c

~{o €1Vh} - /01 (¢/u—0) +€'(uv) +ae(u~v)) do
+1/0 (¢w=UY + (- 0) +aclo 1)) de = {(3)}

- /01 (¢u=v) +¢(u—0) +ae(u—v)) dz

=/0 (¢/(u—v)’ + ae(u—v) + ¢'(u—v)) d

< el - [[(u = v)'[l, + allel|z,|lu —vl[z, + [l€'l|z, - [lu = vl|L,
< el - [I(u = v)'[, + [lelle - |lu — |z,

< llellg - [lu =l +lelle - |lu = vl|L,

< llellis (11w = olle +u = v]l.. )-

This gives the a priori error estimate:

llelle < [lu—vlle + |l —vllL,, Vv € Vi

A posteriori error estimate: We have that

1 1
lel|% :/0 (e'e’ + aee)dx = /0 (e'e’ + e'e + aee) dz

1 1
=/ (u'e’ +u'e + aue) dx — / (U'e' +U'e + alUe) dx.
0 0
Thus using (1) we get
1 1
(4) ||e||i~:/ fedx—/ (U'e' + U'e + aUe) dz,
0 0

which by (2) can be written as

1 1
el = fede— [ (U'e +U'e+ale)dx
E7 o 0

1 1
+ / (U'(Hhe)' + U'Tlpe + aUHhe) dx — / flledz.
0 0



Observe that the last line above is identically 0. Adding up we have

1 1

2 _ _ _ 1, ] 1, _ -1 d

llel| % / fle—Tlye)dx /0 (U (e—pe) +U'(e — Mpe) + alUle he)) x
M1

1
/fe—Hhe)dx—/(U'+aU)(e—Hhe dm—Z/U'e—Hhe) dx
0

={partial integration}
M+1

1
/fe—Hhe)da:—/(U'—I-aU)(e—Hhe d;v—}—Z/U"e—Hhe)d
0 1

1
/(f+U” U' —aU)(e — ye) dm—/ R(U)(e — Ipe) dz

/ hR(U)h™ (e — Tpe) dz < ||hR(U)||L,]|h~" (e — Tne)]| L,
< GillhRU)||z, - |€'llz, < Cil[RR(U)|L, - |le]| -

This gives the a posteriori error estimate:

llellz < Cil[RR(U)||z.,

with R{U)=f+U"-U'—aU=f-U"—aU, on (z;—1,z;), 1=1,...,M +1.

a) Formulate a ¢G(1) finite element method for the following system

{ uw(z) +0"(z) = f(z), w0)=v(1)=0, 0<z<]1,
u"(xz) —v(z) =0, u(0) = u(1) =0,

and show how the approximate solution (U,V) can be computed from the load
vector F', using mass- and stiffness matrises.

b) Derive stability estimates for u and v, in terms of f, (e.g., through multiplying
the first equation by v and the second by ).

Solution: a) Multiplying the equations in the system by the test functions ¢ and
¥, with ¢ =1 =0 for £ = 0 and x = 1, and integrating by parts gives that

Jo (pu — ') = [ of,
(5) { fz Zpd — ¢v) _00

Partitioning of [0,1] into subintervals (elements) I; = [zj_1,z;], ; = j/(m + 1),
the linear approximations U(z) = 37, U;p;(z) and V(z) = 3°7° | Vjp;(z), with
@;(x) s being the usual piecewise linear basis functions, the ¢G(1) approximation
of the above system (4) can be formulated as: Find the nodal values U; and V;
such that

(6) fo QOIU Qozvl fol (pfa i = ]‘J“‘)m)
(iU —;V)=0, i=1,...,m.
0 i
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This gives 2m equations with the 2m unkown nodal values U = [Uy, ..., Uy,]T and

V =[Vi,..., VT, which can be written in the matrix form as
(7) MU - SV = F,
-SU - MV =0,

where M and S are the usual, 3-diagonal, mass- and stiffness matrises, respectively:
M has 2h/3 diagonal elements and h/6 super and subdiagonal elements. Corrse-
ponding elements for S are 2/h diagonal elements and —1/h sub and superdiagonal
elements. All other elemts are zeros. F' is the load vector with elements fol wif.

From the second equation above we get that V = —M ~1SU, which inserting in the
first equation gives U = (M + SM~19)~1F.

b) Multiply the first equation by u and the second equation by —v, add the two
resulting equations and integrate over [0, 1]. By partial integration we have then

1 1
/ u2+v2:/ uf,
0 0

Using Cauchy-Schwartz inequality we get

1
A 1 1
[l + lo]* =/0 uf <l £l < 5llull® + S1£1P

This gives that ||u|| < ||f||, and consequently even ||v|| < ||f]]-
We could alternatively multiply the first equation by —v and the second by —u,
add the two resulting equations and integrate over [0, 1]. By partial integration we

have this time
1 1
/ (W)? + (v')? = / (—v)/,
0 0

Using, first Poincare’, and then the Cauchy-Schwartz inequality we get
1 1
[l + 1'% < [lllll AL < [T < 51117+ S,

so that we have now |[v'|| < ||f]|, and consequently even ||u'|| < || f]|-
We could obviously continue in this manner and get basic stability estimates for
the, e.g., moment v = u”, through

[[a"[] = [lol| < [I£]];
and for v":

"1l = 11 = ull < [If1]+ [lul] < 2/ £]I-

5. Consider the following Schrédinger equation
U+ iAu=0, inQ, w=0, on 0f,

where ¢ = /=1 and u = uy + iuy. a) Show that the toatal probability [, |ul? is
time independent.
Hint: Multiply the equation by 4 = u; — ius, integrate over Q and consider the
real part.
b) Consider the corresponding eigenvalue problem, of finding (A,u # 0), such
that
—Au =y in Q, u=0, on .
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Show that A > 0, and give the relation between ||u|| and ||Vu|| for the corresponding
eigenfunction u.

c) What is the optimal constant C' (expressed in terms of smallest eigenvalue
A1), for which the inequality ||u|| < C||Vu|| can fullfil for all functions u, such that
u =0 on 007

Solution: a) We multiply the shrédinger equation by @ and integrate over Q to
obtain

/au-i-i/ﬂVuz/(u1d1+u2u2)+i/(uldz—uzul—Vﬁ-Vu):&
Q Q Q Q

Now both real and imaginary part of the above expression is 0. Thus, considering
the real part, we have

. . 10
/Q(Ulul + ugtp) = 351 /Q(U% +u3) =0,

therefore [, [u|® is independent of the time.

b) Multiplying the eigenvalue equation —Au = Au by u, integrating over 2, and
using partial integration we get

)\/Quzz/gu(—Au):/QWuF,

which gives A > 0 (and also A > 0, for u # 0). Further ||u|| = %HVuH
This indicates that the constant in the estimate ||u|| < C||Vu||, satisfying for
all functions u with w4 = 0 on T' := 9Q, can not be smaller than ﬁ, with

A1 > 0 being the smallest eigenvalue. As a matter of fact we have the inequal-
ity ||ul] < \/%HVUH, for all u with u = 0 on I'. This is due to the fact that

we can represent u in terms of orthogonal eigenfunctions both “with and without
gradient”, i.e. [ousu; = [o, Vu;-Vu; =0, for i # j.

MA



