TMA371/MANG660 Partial Differential Equations TM, IMP, E3, GU
2003-04-22. Solutions

1. Let © be the triangulated domain below. Compute the ¢cG(1) solution of —Awu =
0 in © with the Neumann data: 0,u = 3 on B; and Dirichlet condition: © = 0 on
Bs.
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Solution.
Variational Formulation: Using Green’s formula we have that

0= / —Auv dx = {Green’s} :/ Vu-Vv—/(@nu)v
Q Q r
(1) ={T':=900: =By UBy} ={v=0o0n By, and ,u = 3 on By}

=/Vu-Vvd:L'—/ 3vds
Q By

Thus we have the finite element formulation: Find piecewise linear function U € V},
such that

(2) /VU-Vv:/ 3vds, Yv e V.
Q B;

Let now

(3) U(z) = Ui () + Uzp2(2),

where ¢; are the piecewise linears basis functions for the above discretization of
Q with @;(N;) = 6;5, i,j = 1,2. We insert (3) in (2) and let v = ¢;, ¢ = 1,2 to
obtain a 2 x 2 system viz,

/chl-chld;cU1+/Vgoz-Vgolde2:3/ p1 ds,
Q Q B

(4)
/chl-chzd;cU1+/Vgoz-Vgozde2:3/ pa ds.
Q Q B
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Note that using the orientation in the figur below we have

kg | X3
N2
k
5
K2
kg
N
V(,Ol k = (_170) v502 k = (07 1)
Vi x = (0,0) Vo 5 =(-1,1)
V(pl = (070) VQOQ = (_17_1)
k3 k3
Ve =000 V| =(1,-1)
Voi| =(0,-1) Vgp| =(1,0)
k5 k5
Thus
V1 -Vpadr = | Vea-Veirdz =0,
Q Q
and
5
/ Vi - Verdz =) IkiI<V901 ki -leki)
@ i=1
1 1 1 1
3 X (-1,0)- (-1,0) + 5 X (0,-1)-(0,-1) = B + 5= 1.
Similarly

5
/ Vs - Vipy dz = |kl (wa2 ki - Vipa
Q i=1

+(_15 1) ’ (_17 1)+(_15 _1) : (_15 _]-) + (15 _]-) : (17 _1) + (170) ’ (130))

1
=3 x (1+2+2+2+1) — 4.

As for the right hand side we have

3/ @1 = 3 x aread of the side alonge By = 3(1/2+ 1/2) =3,
By

3/ QDQZO.
B,

while



Summing up we have a trivial situation as follows:

4 2][%]- 3

Thus U(z) = 3p1(z) and actually, with this configuration, we have a trivial one-
dimensional problem.

Alternatively: We may include N3 = (1,0) and N4 = (0,1) as new nodes and extend
the triangles with Neumann outer boundarys to include k2 and k4. This would lead
to a 4 x 4 system which we are not considering here!

2. Consider the one-dimensional heat equation:

u—u"=f, 0<z<l, t>0,
u(z,0) = uo(z), 0<z<1l,
u(0,t) = uz(1,t) =0, t>0.

a) Using appropriate variational forms show the stability estimates:
¢ t
(O < llwoll + Jo [1( 8)ll ds, and [lug (-, 0)[* < |lugll® + fy £, 8)|* ds.

b. Give physical meaning to the equation when f=9-u.
Solution: a) Multiply the equation by u and integrate over (0,1) to get

1 1 1
/ uud:c—/ u"uda::/ fudz.
0 0 0

Integrating by parts and using the boundary conditions we have

1d ! 2 ! ! 2 U U 1d 2 12
il — (1, t)u(l =2
53 [ e [ () o= w0+ w00, = 35l + |
d , [
= [full ZIlull + [u'l =/ fudz || |||l
0
Consequently

d
— ||| <
Zllul] < 171,

which integrating over time:

t
Anmwzmum—mm

gives the first estimate in a).
Toderive the second estimate we multiply the equation by % and integrate over
(0,1) to obtain:

1 9 1 1
/ () dm—/ u”ﬂdx=||1l||+/ Wi dz — ' (1,8)i(1, ) + (0, 1) 0, )
0 0 0

= il + 2= [ e < Uil < S (L7 + 11).
dt o = =2

Thus ) 1 d )
a2 + 2212 < 2 2
Sl + 5 2P < SR,
and hence

d
prd



4

which, as in the first estimate, integrating over time: fot ds gives the second
estimate.
b) Heat conduction with

u(z,t) = temperature at x at time .

u(x,0) = up(x), the initial temperature at t = 0.

u(0,t) =0, fixed temperatue at z = 0.

u'(1,t) =0, isolated at z = 1, (no heat flux).

f=9—u, heat source, in this case a contril system to force u — 9.

3. Let a be a positive constant. Consider the boundary value problem (BVP)
—u'"(z) + au(z) = f(z), 0<z <1, wu(0)=u(l)=0.

Formulate the corresponding variational formulation (VF), and the minimization
problem (MP) and prove that (BV P) <= (VF) <= (MP).

Solution: See lecture notes, Chapter 8.

4. Prove an a priori and an a posteriori error estimate (in the H'-norm: ||ul|%, =
[[w'||? 4 ||u||?) for a finite element method for the problem

—u"+2zu' +2u=f, 0<z<1, u(0) = u(1) = 0.

Solution: We multiply the differential equation by a test function v € H(I), I =
(0,1) and integrate over I. Using partial integration and the boundary conditions
we get the following variational problem: Find u € H{(I) such that

(5) /(u'v' + 2zu'v + 2uv) = /fv, Yv € Hy(I).
I I
A Finite Element Method with ¢G(1) reads as followa: Find U € V)0 such that
(6) /(U'v'+2xU'v+2UU):/fv, Yv e V) c HY(I),
I I

where
V2 = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u — U, then (1)-(2) gives that
(7) /(e'v' + 2z€'v + 2ev) =0, Vv e VY.
I

A posteriori error estimate: We note that using e(0) = e(1) = 0, we get

(8) /I2xe'e: /156%(62) = (ze?)|g —/162 = —/162,



so that

llell3: = /I(e'e' +ee) = /(e'e' + 2ze’e + 2ee)

I

_ /((u —UYe + 20(u—Ue+2(u—U)e) = {v = e in(1)}
I

9) = fe—/(U'e'+2a:U'e+2Ue):{v:me in(2)}
I I
= /f(e — mhe) — / (U'(e —mpe) + 2xU' (e — mhe) + 2U (e — 7Th€))
I I
= {P.I. on each subinterval} = /’R(U)(e — The),
I
where R(U) := f + U" — 22U" — 2U = f — 22U’ — 2U, (for approximation with
picewise linears, U = 0, on each subinterval). Thus (5) implies that
lellz < IRRO)IIR" (e = mne)|
< GillhRO)|Ille'll < CillhRU) lllell 25
where Cj is an interpolation constant, and hence we have with || -|| = || - ||z,(r) that
llellar < Cil[RR(U)|-

A priori error estimate: We use (4) and write
llel|3: = /(e'e' +ee) = /(e'e' + 2ze'e + 2ee)
I I
= / (e'(u —U) +2ze'(u—U) + 2e(u — U)) ={v=U—-myuin(3)}
I

= /1 (e'(u —mpu) + 2ze’ (u — whu) + 2e(u — ﬂhu))
< |[[(u — )| [l€'l| + 2[lu — mpulllle’]] + 2u — mhul|[le]|
< {ll(uw = mnw)'[| + 4llu — mrul [ }Hlel
< Ci{[|h"| + IR*" [ }lell e,
this gives that
lella < Co{llhu"|| + [[P*u"[|3},

which is the a priori error estimate.
5. Consider the boundary value problem
—div(eVu+ fu) = f, in Q, « =0, on 09,

where ) is a bounded polygonal donmain in R?, € > 0is a constant, 3 = (81 (z), B2 ()),
and f = f(z). Give the conditions (based on Lax-Milgrams theorem) for existence
of a unique solution for this problem. Derive stability estimates for u i terms of
||f||L2(Q), ¢ and diam(9Q).

Solution: Consider

(10) —div(eVu+ fu) = f, in Q, u=0 on I' = 9.
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a) Multiply the equation (6) by v € H}(Q) and integrate over Q to obtain the
Green’s formula

—/ div(eVu + u)vdz = / (eVu + Bu) - Vodz = / fodz.
Q Q Q

Variational formulation for (6) is as follows: Find u € Hj(f2) such that
(11) a(u,v) = L(v), Yv € Hy(Q),
where
a(u,v) = / (eVu + Bu) - Vo dz,
and ’

L(v) = /Q foda.

According to the Lax-Milgram’s theorem, for a unique solution for (7) we need to
verify that the following relations are valid:

i)
i)

la(v, w)| < Allulle @) lwllm @), Vv, w € Hy (),

a(v,v) > allvllin ), Vv € Hy(9),
iii)

IL(w)| < Allollaiey, Vv e Hy(),
for some v, a, A > 0.
Now since

|L(v)| = |/Qf’v dz| <||fllza@llvllza@) < 1flla@llolla @),

thus iii) follows with A = || f[|,(q)-
Further we have that

a(v,w) < [ Vo + B[Vl ds < [ EIV0] +[8][o])|Vul o
Q Q

< ([ evel+1siepas) ([ [vuas)

/
< Vamax(e, 8]) [ (90l +0%) dz) " 1l o

= 'Y”'U”Hl(Q)“w”Hl(Q):

which, with v = v/2max(e, ||]|00), gives i).
Finally, if divg < 0, then

a(v,v) = /Q (5|Vv|2 + (8- Vv)v) dx = /Q (6|Vv|2 +(8 ov ﬂ

6—1 + Bs 5z, )’U) dz

'z
_ 2,15 0 (5.9 (1)) de = :
= /Q (a|V1)| + 2(B1 o (v)* + B2 923 (v) )) dx = Green’s formula
=/ (8|V11|2 - 1(divﬂ)v2) dz > / e|Vv|? de.
Q 2 Q

Now by the Poincare’s inequality

[ vek sz c [ (Vo + ) da = Cllulfp o,



for some constant C' = C(diam(f?)), we have
a(v,v) > a||v||fgl(9), with a = Ce,

thus ii) is valid under the condition that div§ < 0.
From ii), (7) (with v = u) and iii) we get that

allullt ) < alu,u) = L) < Allullm ),
which gives the stability estimate
A
a )
with A = [|f||z,@) and a = Ce defiened above.

lull @) <

MA



