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2D1260 Finite Element Methods: Written Examination

Wednesday 2002-12-18, kl 8-13

Aids: None. Time: 5 hours.

Answers may be given in English or Swedish.

Please note that answers should be explained and calculations shown unless the question states otherwise.
A correct answer without explanation can thus be left without points.

(5) 1. Consider the boundary value problem

−(xu′)′ + 3u = x2, 1 < x < 2

u′(1) = 1, u(2) = 0

Approximate the solution by a quadratic polynomial using Galerkins method.

(5) 2. Use three linear finite elements to solve the previous problem approximately. The discretization points
are x = [1, 1.3, 1.5, 2]. You may use a 1-point quadrature for the integrals. It is not necessary to solve
the resulting final system of equations.

(5) 3. Let the differential equation
−∆u = 1 on Ω

be given on the quadrilateral domain with vertices (1, 2), (3, 1), (4, 2) and (2, 4). The boundary values
are

u = x on the boundary between (3, 1) and (4, 2)
∂u

∂n
= 0 on the other boundaries

Solve the problem using FEM and two linear finite elements obtained by subdividing Ω along the
diagonal connecting (1, 2) and (4, 2).

N.B. The exam continues on the next page.
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(5) 4. Derive a weak formulation of the problem

−∇(k ∇u) + γ u = f on Ω

where Ω is the first quarter of the unit circle:

Ω =
{x = r cosϕ,
y = r sinϕ, with

{
0 < r < 1
0 < ϕ < π/2

and the boundary conditions are

u = x, when y = 0

k
∂u

∂x
= 1, when x = 0

u = 2− x, on the curved boundary

(3) 5. Describe 4 typical finite elements.

(2) 6. Describe an a-priori error estimate. Describe an a-posteriori error estimate. Comment on similarities
and differences in the estimations.

Good luck

and

Merry Christmas & Happy New Year!

NINNI
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2D1260 FEM 2002-12-18: Short solutions

1. Obtain a weak form: Find u such that
∫ 2

1

(−(xu′)′ + 3u) v dx =
∫ 2

1

x2 v dx

for any v such that v(2) = 0 (since Dirichlet BC at x = 2). Do partial integration to lower order of
derivatives: ∫ 2

1

−(xu′)′v dx =
[ − (xu′) v

]2

1
−

∫ 2

1

(−xu′) v′ dx

= −2u′(2)v(2) + 1u′(1)v(1) +
∫ 2

1

xu′ v′ dx

= v(1) +
∫ 2

1

xu′ v′ dx

since v(2) = 0 and u′(1) = 1. Leading to the weak form: Find u such that for any v with v(2) = 0

∫ 2

1

xu′v′ + 3uv dx = −v(1) +
∫ 2

1

x2 v dx

The ansatz should be a second order polynomial (3 coefficients) with one extra requirement (loose one,
leaving two unknown coefficients). General second order polynomial is

p2(x) = c1 + c2x+ c3x
2

The demand p(2) = 0 leads to the condition c1 + 2c2 + 4c3 = 0. Choose two parameters, leading to

p(x) = α1v1(x) + α2v2(x)

If we ’choose’ α1 = c2 and α2 = c3 we thus obtain

c1 = −2c2 − 4c3 = −2α1 − 4α2

giving
p(x) = (−2α1 − 4α2) + α1x+ α2x

2

= α1(x− 2) + α2(x2 − 4)
= α1v1(x) + α2v2(x)

The Galerkin method thus means testing the weak formulation with U = α1v1 + α2v2 and v = v1 and
v = v2. This leads to the 2× 2 system of equations

([
S11 S12

S21 S22

]
+

[
Q11 Q12

Q21 Q22

]) [
α1

α2

]
=

[
B1

B2

]
+

[
F1

F2

]

where

Sij =
∫ 2

1

x v′i v
′
j dx

Qij =
∫ 2

1

3 vi vj dx

Bi = −vi(1)

Fi =
∫ 2

1

x2 vi dx

with
v1 = x− 2

v2 = x2 − 4
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Calculus gives ([
3/2 14/3
14/3 15

]
+

[
1 13/4

13/4 53/5

]) [
α1

α2

]
=

[
1
3

]
+

[−11/12
−47/15

]

giving α1 ≈ 2.4042 and α2 ≈ −0.7487.

2. The weak formulations is of course the same as above. Use linear base functions. Use standard element

ϕ1 = 1− ξ, ϕ2 = ξ

The Jacobian becomes J = Lk The 3 elements have lengths L1 = 0.3, L2 = 0.2 and L3 = 0.5. The
S-matrix becomes

S(k) =
∫ 1

0

x̂

(
1
Lk

)2 [
1 −1
−1 1

]
Lk dξ =

mk

Lk

[
1 −1
−1 1

]

using mid-point quadrature withmk as the midpoint of the interval (in true coordinates!). The Q-matrix
becomes

Q(k)
ij =

∫ 1

0

3ϕi ϕjdetJ dξ = 3Lk

∫ 1

0

ϕi ϕj dξ ⇒ Q(k) = 3LkM(k) = 3Lk

[
1/3 1/6
1/6 1/3

]
= Lk

[
1 1

2
1
2 1

]

where M is the mass matrix.

v(1) only affect equation 1 (v = ϕ1), where ϕ(1) = 1. Thus B1 = −1 leading to the vector B =
(−1, 0, 0, 0)T . Finally the element load vector is calculated

f
(k)
i =

∫ 1

0

x̂2ϕi(ξ)det J dξ = (midpoint) = m2
k · 0.5 · Lk, i = 1, 2

since both basis funcstions have the value 0.5 at the midpoint of the interval. Assembling the S-matrix
(m1/L1 = 0.5, m2/L2 = 2, m3/L3 = 1.5) and Q-matrix: (Error in calc! m1/L1 should been 1.15/0.3
not 0.15/0.3, and so on. Numbers will be corrected soon...)

S =




0.5 −0.5 0 0
−0.5 0.5 + 2 −2 0
0 −2 2 + 1.5 −1.5
0 0 −1.5 1.5


 Q =




0.3 0.15 0 0
0.15 0.3 + 0.2 0.1 0
0 0.1 0.2 + 0.5 0.25
0 0 0.25 0.5




and the f-vector (m2
k · Lk/2 equals 0.003375, 0.016 and 0.140625 respectively:

f = ( 0.003375 0.003375+ 0.016 0.016 + 0.140625 0.140625 )T

leading to the generalised stiffness matrix and load vector

S̃ = S + Q =




0.8 −0.35 0 0
−0.35 3 −1.9 0

0 −1.9 4.2 −1.25
0 0 −1.25 2


 f̃ =



−1
0
0
0


 +



0.003375
0.019375
0.156625
0.140625


 =



−0.996625
0.019375
0.156625
0.140625




Finally we adjust the stiffness matrix and load vector for known values (the Dirichlet boundary condi-
tions), here the last value:

S̃ =




0.8 −0.35 0 0
−0.35 3 −1.9 0

0 −1.9 4.2 −1.25
0 0 0 1


 f̃ =



−0.996625
0.019375
0.156625

0



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3. The DE −∆u = 1 with zero Neumann BC:s has weak formulation∫
Ω

−∆uvdx =
∫

Ω

∇u∇vdx =
∫

Ω

1vdx

Using the standard triangle element

φ1 = 1− ξ − η, φ2 = ξ, φ3 = η

we have

B =
[ ∂φ1

∂ξ
∂φ2
∂ξ

∂φ3
∂ξ

∂φ1
∂η

∂φ2
∂η

∂φ3
∂η

]
=

[−1 1 0
−1 0 1

]

The element stiffness matrix will be

Sk =
∫ 1

0

∫ η

0

(J−1B)T (J−1B)det J dξdη = (J−1B)T (J−1B)detJ
1
2

if the Jacobian is a constant over each element (which it is with linear basis functions). The components
of the element load vector will be

fi =
∫ 1

0

1 · φi(ξ, η) det J dξdη =
1
6
detJ

The Jacobian is obtained by the iso-parametric mapping x̄(ξ, η) =
∑3

i=1 φi(ξ, η) · x̄i, here:
(
x
y

)
= (1− ξ − η)

(
x1

y1

)
+ ξ

(
x2

y2

)
+ η

(
x3

y3

)

=
(
x1

y1

)
+ ξ

(
x2 − x1

y2 − y1

)
+ η

(
x3 − x1

y3 − y1

)

The Jacobian is thus

J =
[ ∂x

∂ξ
∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]

I now number the nodes, anticlockwise, starting with (1, 2) as number 1 and call the lower triangle
element 1.
On element 1 the nodes are 1, 2 and 3. The Jacobian is thus

J =
[
2 −1
3 0

]
with det J = 3

giving the local stiffness matris and element vector

S(1) =


 1/3 −1/2 1/6
−1/2 3/2 −1
1/6 −1 5/6


 and F (1) =


 1/2
1/2
1/2




On element 2 the nodes are 1, 3 and 4. The Jacobian is thus

J =
[
3 0
1 2

]
with det J = 6

giving the local stiffness matris and element vector

S(2) =


 2/3 −1/6 −1/2
−1/6 5/12 −1/4
−1/2 −1/4 3/4


 and F (2) =


 1
1
1



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The global matrices is thus

S =




1/3 + 2/3 −1/2 1/6− 1/6 −1/2
−1/2 3/2 −1 0

1/6− 1/6 −1 5/6 + 5/12 −1/4
−1/2 0 −1/4 3/4


 with F =




1/2 + 1
1/2

1/2 + 1
1




Adjust for the known Dirichlet boundary conditions in nodes 2 and 3 (u2 = 3 and u3 = 4)




1 −1/2 0 −1/2
0 1 0 0
0 0 1 0

−1/2 0 −1/4 3/4







u1

u2

u3

u4


 =




3/2
3
4
1




The solution is
u = ( 6.5 3 4 7 )T

4. For the weak formulation we will use Gauss’ Theorem which is
∫

Ω

∇ · w̄ dΩ =
∫

Γ

w̄ · n̂ dS

where Γ is the close surface surrounding Ω. From the rule of derivation of products we obtain

∇ · (αw̄) = α(∇ · w̄) + w̄ · (∇α)

We thus have
∫

Ω

∇ · (q̄ v) dΩ =
∫

Ω

(∇ · q̄) v dΩ +
∫

Ω

q̄ · ∇v dΩ ⇒
∫

Ω

(∇ · q̄) v dΩ =
∫

Γ

n̂ · q̄ v ds−
∫

Ω

q̄ · ∇v dΩ

The differential equation read
−∇(k ∇u) + γ u = f on Ω

a weak formulation then is
∫

Ω

(−∇(k ∇u)) v dΩ +
∫

Ω

γ u v dΩ =
∫

Ω

f v dΩ

The first integral is changed using Gauss’ Theorem with q̄ = −k∇u:
∫

Ω

(−∇(k ∇u)) v dΩ =
∫

Γ

n̂ · (−k ∇u) v ds−
∫

Ω

(−k ∇u) · ∇v dΩ

The boundary Γ is split in three parts, Γ1 where y = 0, Γ2 where x = 0 and the curved boundary Γ3.
On Γ1 and Γ3 we have Dirichlet boundary conditions, thus we have v = 0 there. On Γ2 we have a
non-zero Neumann boundary conditions, thus this is the only part of

∫
Γ
which remains.

∫
Γ

n̂ · (−k ∇u) v ds =
∫

Γ1

(+1) v ds

This leads to the following weak formulation: Find u such that
∫

Ω

k ∇u · ∇v dΩ+
∫

Ω

γ u v dΩ =
∫

Ω

f v dΩ−
∫

Γ1

v ds

for all v such that v = 0 on Γ1 and Γ3 (and u and v must be continuous and once differentiable).
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5. Typical finite elements have basis functions that are 1 in ’their own’ node and 0 at all the others. Typical
basis functions are the Lagrange polynomials.
Examples of typical finite elements are

• 1D, with one node at each end of the interval and linear basis functions.
• 1D, with one node at each end of the interval and one in the interior , with quadratic basis functions.
• 2D triangular element, with one node at each corner and linear basis functions.
• 2D quadrilateral element, with one node at each corner and bilinear basis functions.
• 2D 8-node serendipity element, se textbook for details.
• 2D M ×N -node Lagrange element, se textbook for details.
• 3D M ×N ×Q-node Lagrange element, se textbook for details.

6. An a-priori error estimate is done before the actual calculation is done. It is formulated on the exact
solution and known parameters such as the grid size. Typical form of the estimate is (for 2nd order
PDE):

||u− U ||E ≤ Ckh
k||Dk+1u||L2(Ω)

||u − U ||L2(Ω) ≤ C̃kh
k+1||Dk+1u||L2(Ω)

where u is the exact solution, k+1 times differentiable, U is the FEM solution, Ck and C̃k are constants,
independent of h, k and u (but dependent on Ω and mesh properties), h is a mesh size parameter, Dk+1u
are all (k + 1) derivatives of u, and k is the order of the piecewise polynomials used.
The estimate gives a qualitative picture on the speed of convergence if h → 0. (i.e. with grid refinement).

An a-posteriori error estimate is done after the actual calculation is done. It is based on the
computed FEM solution U (and qualitative information of the exact solution u). Typical form of the
estimate uses the residual estimation

||e|| ≤ CiCs||hkR(U)||

where Ci is an interpolation constant (must be estimated, e.g. by refining the grid once or using a
known solution) Cs is a stability constant (must generally be estimated, or as above), and R(U) is the
residual. A coarse but often used approximation is

||e|| ≈ ||U coarse grid − Ufine grid||

which however generally underestimates the error. Another common a-posteriori error estimate is to
use a sequence of finer grids and see how U changes with grid size and do a Richardson extrapolation.

(Actually Richardson extrapolation in 2D and higher dimensions is risky - if there is a singularity at the
boundary of the domain there is no asymptotic expression. Also, comparision bewtween coarser and
finer grids are often too cumbersome in 3D and higher.)
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