
2D1260, NADA, KTH, Ninni Carlsund, 2003-02-15

2D1260 Finite Element Methods: Written Examination

Saturday 2003-02-15, kl 8-13

Aids: None. Time: 5 hours.

Answers may be given in English or Swedish.

Please note that answers should be explained and calculations shown unless the question states otherwise.
A correct answer without explanation can thus be left without points.

Using a desk calculator is not allowed. It is thus allowed to leave simple expressions unsimplified which could
easily be calculated on a simple desk calculator. For example α = 0.3 · 0.153 · 0.7

(5) 1. Consider the boundary value problem

−(x2 u′)′ − u = x2, 0.1 < x < 0.8

u(0.1) = 1, u′(0.8) = 4

Approximate the solution by a quadratic polynomial using Galerkins method.
(You may use a 1-point quadrature for the integrals. It is not necessary to solve the resulting final
system of equations.)

(5) 2. Solve the differential problem above using two second order finite elements. The element endpoints are
x = [0.1, 0.5, 0.8]. You may use a 1-point quadrature for the integrals. It is not necessary to solve the
resulting final system of equations.
(Using linear finite elements will not give full points in this exercise.)

(5) 3. Let the differential equation
−∇ · (x∇u) = 2 on Ω

be given on the quadrilateral domain with vertices (2, 1), (3, 1), (3, 4) and (2, 4). The boundary values
are

u = x2 where y = 1
∂u

∂n
= 0 on the other boundaries

Solve the problem using FEM and two linear finite elements obtained by subdividing Ω along the
diagonal connecting (2, 1) and (3, 4).
(You may use a 1-point quadrature for the integrals. It is not necessary to solve the resulting final
system of equations.)

N.B. The exam continues on the next page.
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(5) 4. Derive a weak formulation of the 2D-problem

β · ∇u−∇ · (ε ∇u) + γ u = f on Ω

where Ω is the first quarter of the unit circle:

Ω =
{x = r cosϕ,
y = r sinϕ, with

{
0 < r < 1
0 < ϕ < π/2

and the boundary conditions are

(∇u) · n = g, when y = 0
∂u

∂y
= h, when x = 0

u = j, on the curved boundary

where f , g, h and j are smooth functions, β = (βx, βy) is a field vector and ε > 0 a positive constant.

(5) 5.

Figures missing: Grid 1= Mesh of quads Grid 2 = Mesh of triangles

a) Perform one standard refinement of grid 1 above.

b) Perform one standard refinement of grid 2 above.

c) What is the Delauney criteria for triangulation of a grid?

d) Does grid 2 above fulfill the Delauney criteria for triangulation? Show how you deduce your answer.

Good luck!

NINNI
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2D1260 FEM 2003-02-15: Hints to solutions
No official solutions are made to “reexaminations”, thus this is only a “working paper”. Please beware

of misprints. /Ninni

1. Obtain a weak form: Find u such that
∫ 0.8

0.1

(−(x2u′)′ − u) v dx =
∫ 0.8

0.1

x2 v dx

for any v such that v(0.1) = 0 (since Dirichlet BC at x = 0.1). Do partial integration to lower order of
derivatives:

∫ 0.8

0.1

−(x2u′)′v dx =
[ − (x2u′) v

]0.8

0.1
−

∫ 0.8

0.1

(−x2u′) v′ dx

= −0.82u′(0.8)v(0.8) + 0.12u′(0.1)v(0.1) +
∫ 0.8

0.1

xu′ v′ dx

= −2.56 v(0.8) +
∫ 0.8

0.1

xu′ v′ dx

since v(0.8) = 0 and u′(0.8) = 4. Leading to the weak form: Find u such that for any v with v(0.8) = 0

∫ 0.8

0.1

xu′v′ − uv dx = 2.56 v(0.1) +
∫ 0.8

0.1

x2 v dx

The ansatz should be a second order polynomial (3 coefficients). With one requirement on v we are left
with two unknown coefficients. A general second order polynomial is

p2(x) = c1 + c2x+ c3x
2

The testfunctions v should be zero at x = 0.1, thus a possible choice is to put the constant function
as zero, the linear function as v1 = x − 0.1 and the quadratic function as v2 = x2 − 0.12, giving
U = 1 + α1 · v1(x) + α2 · v2(x).

The Galerkin method means testing the weak formulation with u = U and v = v1 and v = v2. This
leads to the 2× 2 system of equations

([
S11 S12

S21 S22

]
−

[
Q11 Q12

Q21 Q22

]) [
α1

α2

]
=

[
B1

B2

]
+

[
F1

F2

]

where

Sij =
∫ 0.8

0.1

x2 v′i v
′
j dx

Qij =
∫ 0.8

0.1

vi vj dx

Bi = 2.56vi(0.8)

Fi =
∫ 0.8

0.1

x2 vi dx

with
v1 = x− 0.1

v2 = x2 − 0.12

Using mid-point quadrature, x = (0.1 + 0.8)/2 = 0.45 = x̂, we have

S11 ≈ 0.452 · 12 · 0.7 (= 0.14175)

S12 ≈ 0.452 · 1 · (2 · 0.45) · 0.7 (= 0.127575)

S22 ≈ 0.452 · (2 · 0.45)2 · 0.7 (= 0.1148175)
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etc. (It is recommended to stop at S11 ≈ 0.45 · 12 · 0.7 etc)

If the calculation is persued it becomes:
([

0.14175 0.127575
0.127575 0.1148175

]
−

[
0.08575 0.0471625

0.0471625 0.025939375

]) [
α1

α2

]
=

[
0.49
0.441

]
+

[
0.0496125

0.027286875

]

giving α1 ≈ −6.9199 and α2 ≈ 11.5296.

2. The weak formulations is of course the same as above. Two second order elements: Use quadratic base
functions. On element 1 we have x1 = 0.1, x2 = 0.3, and x3 = 0.5.

ϕ1 =
(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

, ϕ2 =
(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

, ϕ3 =
(x− x1)(x− x2)
(x3 − x1)(x3 − x2)

with S, Q, B and F as in exercise 1 (except that indices goes from 1 to 3 and the intgeration is from
0.1 to 0.3. The derivatives are

ϕ′
1 =

(2x− x2 − x3)
(x1 − x2)(x1 − x3)

, ϕ′
2 =

(2x− x1 − x3)
(x2 − x1)(x2 − x3)

, ϕ′
3 =

(2x− x1 − x2)
(x3 − x1)(x3 − x2)

Using midpoint quadrature (it was said to be OK!) we have x̂ = x2 = (x1 +x3)/2 and ϕ1(x̂) = ϕ3(x̂) =
ϕ′

2(x̂) = 0 thus

S =


 α1 0 −α1

0 0 0
−α1 0 α1


 , Q =


 0 0 0

0 β1 0
0 0 0


 , F =


 0

γ1

0


 , B =


 0

0
0




where ϕ′
1(x̂) = −1/L1 = −ϕ′

3(x̂) and ϕ2(x̂) = 1 giving α1 = −x̂2/L1 and β1 = x̂2 · 12 · L1 and
γ1 = x̂2 · 1 · L1, where L1 = x3 − x1.

The same thing holds for element two (now x̂ = x4 = (x5 + x3)/2),

S =


 α2 0 −α2

0 0 0
−α2 0 α2


 , Q =


 0 0 0

0 β2 0
0 0 0


 , F =


 0

γ2

0


 , B =


 0

0
2.56




giving the global matrices after assembling



α1 0 −α1 0 0
0 −β1 0 0 0

−α1 0 α1 + α2 0 −α2

0 0 0 −β2 0
0 0 −α2 0 α2







u1

u2

u3

u4

u5


 =




0
γ1

0
γ2

2.56




Finally adjust for Dirichlet BC



1 0 0 0 0
0 −β1 0 0 0

−α1 0 α1 + α2 0 −α2

0 0 0 −β2 0
0 0 −α2 0 α2







u1

u2

u3

u4

u5


 =




1
γ1

0
γ2

2.56




3. The DE −∇ · (x∇u) = 2 has weak formulation
∫

Ω

−∇ · (x∇u)vdx =
∫

Γ

(x∇u)v · n̂ds
∫

Ω

(x∇u)∇vdx ==
∫

Ω

2vdx
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where
∫
Γ
= 0 since we have zero Neumann BC:s. Using the standard triangle element

φ1 = 1− ξ − η, φ2 = ξ, φ3 = η

we have

B =
[ ∂φ1

∂ξ
∂φ2
∂ξ

∂φ3
∂ξ

∂φ1
∂η

∂φ2
∂η

∂φ3
∂η

]
=

[−1 1 0
−1 0 1

]

The element stiffness matrix will be

Sk =
∫ 1

0

∫ η

0

x(ξ, η)(J−1B)T (J−1B)det J dξdη = (J−1B)T (J−1B)det J
∫ 1

0

∫ η

0

x(ξ, η) dξdη

since the Jacobian is a constant over each element (because of linear basis functions). The components
of the element load vector will be (with 1-point quadrature)

fi =
∫ 1

0

2 · φi(ξ, η) detJ dξdη ≈ 2 · 1
3
detJ · 1

2
=

1
3
detJ

The Jacobian is obtained by the iso-parametric mapping x̄(ξ, η) =
∑3

i=1 φi(ξ, η) · x̄i, here:

(
x
y

)
= (1− ξ − η)

(
x1

y1

)
+ ξ

(
x2

y2

)
+ η

(
x3

y3

)

=
(
x1

y1

)
+ ξ

(
x2 − x1

y2 − y1

)
+ η

(
x3 − x1

y3 − y1

)

The Jacobian is thus

J =
[ ∂x

∂ξ
∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]

I now number the nodes, anticlockwise, starting with (2, 1) as number 1 and call the lower (right-most)
triangle element 1.
On element 1 the nodes are 1, 2 and 3. The Jacobian is thus

J =
[
1 0
1 3

]
with det J = 3

Using 1-point quadrature (at ξ = η = 1/3) we have x̂ = (x1+x2+x3)/3 = 8/3 and
∫ 1

0

∫ η

0
x(ξ, η) dξdη ≈

8/3 · 1/2 = 4/3 XXX giving the local stiffness matris and element vector

S(1) =
1
3


 9 −9 0
−9 10 −1
0 −1 1


 4
3

and F (1) =


 1
1
1




On element 2 the nodes are 1, 3 and 4. The Jacobian is thus

J =
[
1 3
0 3

]
with det J = 3

and (x1 + x3 + x4)/3 = 7/3 giving the local stiffness matris and element vector

S(2) =
1
3


 1 −0 −1

0 9 −9
−1 −9 10


 · 7

3
· 1
2

and F (2) =


 1
1
1



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The global matrices are thus

S =




S
(1)
11 S

(1)
12 S

(1)
13 0

S
(1)
21 S

(1)
22 S

(1)
23 0

S
(1)
31 S

(1)
32 S

(1)
33 0

0 0 0 0


 +




S
(2)
11 0 S

(2)
12 S

(2)
13

0 0 0 0
S

(2)
21 0 S

(2)
22 S

(2)
23

S
(2)
31 0 S

(2)
32 S

(2)
33


 =




S
(1)
11 + S

(2)
11 S

(1)
12 S

(1)
13 + S

(2)
12 S

(2)
13

S
(1)
21 S

(1)
22 S

(1)
23 0

S
(1)
31 + S

(2)
21 S

(1)
32 S

(1)
33 + S

(2)
22 S

(2)
23

S
(2)
31 0 S

(2)
32 S

(2)
33




F =




1
1
1
0


 +




1
0
1
1


 =




2
1
2
1




Adjust for the known Dirichlet boundary conditions in nodes 1 and 2 (u1 = 22 = 4 and u2 = 32 = 9)


1 0 0 0
0 1 0 0

S
(1)
31 + S

(2)
21 S

(1)
32 S

(1)
33 + S

(2)
22 S

(2)
23

S
(2)
31 0 S

(2)
32 S

(2)
33







u1

u2

u3

u4


 =




4
9
2
1




4. For the weak formulation we will use Gauss’ Theorem which is∫
Ω

∇ · w̄ dΩ =
∫

Γ

w̄ · n̂ dS

where Γ is the close surface surrounding Ω. From the rule of derivation of products we obtain
∇ · (αw̄) = α(∇ · w̄) + w̄ · (∇α)

We thus have∫
Ω

∇ · (q̄ v) dΩ =
∫

Ω

(∇ · q̄) v dΩ +
∫

Ω

q̄ · ∇v dΩ ⇒
∫

Ω

(∇ · q̄) v dΩ =
∫

Γ

n̂ · q̄ v ds−
∫

Ω

q̄ · ∇v dΩ

The differential equation read
−∇(k ∇u) + γ u = f on Ω

a weak formulation then is∫
Ω

(−∇(k ∇u)) v dΩ +
∫

Ω

γ u v dΩ =
∫

Ω

f v dΩ

The first integral is changed using Gauss’ Theorem with q̄ = −k∇u:∫
Ω

(−∇(k ∇u)) v dΩ =
∫

Γ

n̂ · (−k ∇u) v ds−
∫

Ω

(−k ∇u) · ∇v dΩ

The boundary Γ is split in three parts, Γ1 where y = 0, Γ2 where x = 0 and the curved boundary Γ3.
On Γ1 and Γ3 we have Dirichlet boundary conditions, thus we have v = 0 there. On Γ2 we have a
non-zero Neumann boundary conditions, thus this is the only part of

∫
Γ which remains.∫

Γ

n̂ · (−k ∇u) v ds =
∫

Γ1

(+1) v ds

This leads to the following weak formulation: Find u such that∫
Ω

k ∇u · ∇v dΩ+
∫

Ω

γ u v dΩ =
∫

Ω

f v dΩ−
∫

Γ1

v ds

for all v such that v = 0 on Γ1 and Γ3 (and u and v must be continuous and once differentiable).

5.
Not complete answer!!! Only hints:

• Standard refinement of quad: put new nodes at midsides and center of element. Connect with lines.
(Splits each quad into four quads)

• Standard refinement of triangle: put new nodes at midsides of element. Connect new nodes with lines.
(Splits each triangle into four triangles)

• The Delauney criteria is the Delauney circle criteria. (in short: the circle circumventing the triangular
element should not contain any other node.)
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