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Project Work  

1 Introduction  
The project is divided into two parts; the first part concerns FEM approximation of Poisson’s equation, 
and the second part concerns FEM for convection-diffusion-reaction equations. The purpose of the 
project is to get familiar with two important partial differential equations, and to gain an understanding 
of FEM approximation for these equations.  

1.1 Puffin - a simple FEM solver  
Puffin is a simple FEM solver for Matlab/Octave in the form of  
(1) two m-files for the assembly of a matrix and a vector (AssembleMatrix.m and 
AssembleVector.m), and  
(2) a file describing the solution algorithm together with the definition of the PDE in variational form, 
for example PoissonSolver.m and Poisson.m.  
Puffin is part of FEniCS, an open source software project for computational technology for solving 
differential equations. To download and install Puffin:  
 
 1. Go to the FEniCS homepage, www.fenics.org/puffin.  
 2. Download Puffin 0.1.6. to your working directory.  
 3. Unpack the files in puffin-0.1.6.tar.gz.  
 
You find the m-files in the src directory. Puffin is a minimal implementation of the FEniCS FEM 
solver DOLFIN, available for download at www.fenics.org/dolfin. DOLFIN is implemented 
in C++/Python and is suitable for large scale problems in 2D and 3D.  

1.2 Puffin tutorial  
A very good way to get familiar with Puffin is to complete the Puffin computer sessions F1-F5 at 
www.bodysoulmath.org/sessions/.  

1.3 Examination  
The project can be done individually or in groups of two. Each group should hand in two written 
reports: for Project A and Project B, each including a first page containing:  
course code (DN2260), name, email address and educational program for all group members.  
• Report A should be handed in no later than Friday, September 28.  
• Report B should be handed in no later than Friday, October 19.  
A combined grade 3-5 will be given for the projects A+B, which is part of the final grade of the 
course:  
• For grade 5: Problems 1-4 have to be solved for both Project A and B.  
• For grade 4: Problems 1-3 have to be solved for both Project A and B.  
• For grade 3: Problems 1-2 have to be solved for both Project A and B.  

1.4 Report layout  
The reports should contain a description of each problem, a plot of the FEM solution of each problem, 
and (in an appendix) the matlab code used to solve the problem (only the new code written, not the 
existing Puffin code). For plotting use the matlab pdetoolbox functions pdesurf or 
pdemesh, where you can set the view by the command view. The standard 3D view is set by:  
>> view(-37.5,30)  
For the report use plots by pdemesh.  

2 Meshes  
Puffin (and the Matlab PDE ToolBox) uses the following data structures to represent a 
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triangular finite element mesh with nel elements and nnodes nodes:  
• p(2,nnodes) - coordinates (x1, x2) of the nodes  
• e - edge information  
• t(4,nel) - elements (triangles): global node numbers for local nodes 1,2,3. The fourth number in 
t(:,k) is a subdomain numbering.  
For details, see:  
www.mathworks.com/access/helpdesk/help/toolbox/pde/ug/index.html 
www.mathworks.com/access/helpdesk/help/toolbox/pde/ug/pdetrg.html  
 
For the project we consider the 2D computational domain Ω = [0, 1] × [0, 1], the unit square.  
• (p,e,t) of a uniform 2 x (8 x 8) triangular mesh T1 of the unit square is available in Puffin as 
square.m, nel = 128, nnodes = 81 
• square refined.m. gives a uniformly refined mesh T2 from T1. 
You can generate a mesh for a(nother) four-sided domain Q by: 
0. Let p be the mesh generated by square; 
1. Define the function g(x) which maps Ω onto Q; 
2. Compute the coordinates of the mesh on Q by p := g(p). 

3 Project A  
Consider Poisson’s equation:  
 −∆u(x) = f (x), x ∈ Ω,     (3.1)  
with x = (x1, x2) and Ω = [0, 1] × [0, 1] the unit square, with homogeneous Dirichlet boundary 
conditions:  
 u(x) = 0, ∀x ∈ ∂Ω.     (3.2)  
This equation is implemented in Puffin as 2 m-files: PoissonSolver.m and Poisson.m. To 
use the solver in Matlab/Octave:  
>> PoissonSolver  

3.1 Problem A1  
Write down a FEM method for this problem using piecewise linear basis functions in space, then solve 
equation (1) using Puffin for 2 different source functions:  
 f1(x) = 32 x1 (1 − x1) + 32 x2 (1 − x2),   (3.3)  
 f2(x) = 10π2 sin(π x1) sin(2π x2),   (3.4)  
corresponding to the two exact solutions u1 , u2 , given by  
 u1(x) = 16 x1 (1 − x1) x2(1 − x2),   (3.5)  
 u2(x) = 2 sin(π x1) sin(2π x2).    (3.6)  
Plot the solution and the error using the two different meshes T1 and T2. 

3.2 Problem A2  
On the parts of the boundary where x1 = 0 and x1 = 1, respectively, change the Dirichlet conditions to 
homogeneous Neumann boundary conditions:  
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with n = (n1, n2) the unit outward normal of the boundary. The source function 
 f3(x) = 5π2 cos(π x1) sin(2π x2),    (3.8)  
then corresponds to the exact solution  
 u3 (x) = cos(π x1) sin(2π x2).    (3.9)  
Plot the solution and the error using the two different meshes T1 and T2.  
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3.3 Problem A3  
A FEM mesh T = {K} is a sub-division of Ω into a non-overlapping set of 
elements (or cells) K, with diameter hK. To preserve continuity over edges, no 
node (vertex) of one triangle can lie on the edge of another triangle: such 
nodes are called hanging nodes, see figure right.  
 
Local refinement of a FEM mesh must avoid hanging nodes. One such 
algorithm in 2D is the red-green mesh refinement algorithm:  
Mark a number of cells for refinement, then  
1. loop over all marked cells, for each cell create new nodes at the midpoints of its edges, which gives 
4 new red cells, and then  
2. loop over all all hanging nodes, and connect each hanging node with the corresponding opposite 
nodes in each cell. Note different cases dependent on how many edges have hanging nodes! 
The new cells thus created are labeled green. The angles of (some of) the new triangles are about half 
their original size. If the refinement is repeated, unacceptably small angles may result. Therefore, the 
green cells should first be re-combined and then split into four if they have neighbors which should be 
refined. 
 
 
 
 
 
 
 
 
Implement the red-green mesh refinement algorithm as a Matlab/Octave function in an m-file. 
Illustrate the algorithm by 3 times refining the mesh T1, marking all cells for refinement with at least 
one node inside the circle defined by (x1−0.5)2 + (x2−0.5)2 ≤ 0.052. Plot the 3 refined meshes, zoomed 
so the details of the mesh at the refinement front are clear. 

3.4 Problem A4  
Compute the residual R(U) = f + ∆U for the solutions in Problem A1. Use the approximation  
∆U ≈ ∆hU, with ∆hU the discrete Laplacian, defined as in CDE pp. 358-359. Plot the errors, and 
compare their L2 -norms, using two different mesh refinement algorithms:  
 1. 3 uniform mesh refinements (refine all cells 3 times).  
 2. 5 local mesh refinements, where in each step you refine 50% of the cells, those with the 
 largest residual R(U).  
How many nodes are used in each step of the algorithm in the two approaches? Which approach is the 
most efficient in terms of using as few nodes as possible to obtain as low error as possible? Plot the 
final meshes for 1 and 2.  

4 Project B  
Now consider the convection-diffusion-reaction equation:  
       

! 

"u /"t #$%u + & '(u +)u = f ,(x,t )* +, (0,T ]   (4.1) 
with x = (x1, x2) and Ω = [0, 1] × [0, 1], and initial solution u(x, 0) = u0(x).  

4.1 Problem B1  
Set  
     

! 

"u /"t = 0, α(x) = 0.1, ε = 0.01, β(x) = 5(−(x2 − 0.5), x1 − 0.5),  
for the same uniform mesh T1 as in Project A. Write down a FEM method for this problem using 
piecewise linear basis functions in space and compute the stationary solution with homogeneous 



DN2260 - Finite Elements  Fall 07 07-08-31-p. 4(5) 
JO 070830 

Neumann boundary conditions: ∂u/∂n = 0, and with the source term:  
 f(x) = 1, if |x − (0.75, 0.5)| < 0.1,  
             = 0 elsewhere.  
A physical interpretation of this problem is that u(x) is the concentration of a contaminant in the 
domain Ω with diffusivity ε and stirred by the flow velocity β(x). The contaminant source is at 
(0.75,0.5) and it is destroyed at a rate given by the absorption coefficient α(x). What sort of motion is 
described by β? What is its divergence? Where does the flow enter viz. exit Ω? 

4.2 Problem B2  
Write down a FEM method using piecewise linear basis functions in space and implicit Euler time 
stepping (This is the method used in F3: Problem 2). The implicit Euler time discretization for each 
time interval In = [tn−1, tn ], with time step kn = tn − tn−1, reads:  
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4.2.1 Problem B2.1  
Solve the problem to final time T = 0.25, using a time step k = 0.01, on the mesh T2, using Puffin 
with:  
 α(x) = f (x) = 0, β(x) = (0, 0),  ε = 1, u0(x) = 16 x1(1 − x1) x2 (1 − x2),  
and homogeneous Dirichlet boundary conditions u(x) = 0 for the whole boundary ∂Ω. This 
corresponds to the heat equation:   
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with homogeneous Dirichlet boundary conditions. Prove the “energy estimate”  

 
    

! 

u(t )
2

+ 2 "u
2

dt

0

t

# = u0
2
,$t > 0     (4.4) 

meaning that the L2-norm of the solution u(.,t) will decrease as time increases. Can you see the same 
behavior in the computed FEM solution? The energy estimate (4.4) also says that u will decrease 
faster if its gradient is large. Is this true in the computation? Try instead with  
 u0(x) = sin(4π x1) sin(4π x2).  
What do you see? Plot both solutions at the final time.  

4.2.2 Problem B2.2  
Set  
 α(x) = 0, ε = 0.1, β(x) = 5(−(x2 − 0.5), x1 − 0.5),  
and compute the solution on the mesh T2, up to final time T = 3.5, using a time step k = 0.05, with 
homogeneous Neumann boundary conditions: ∂u/∂n = 0, and with the source term:  
 f(x,t) = 1, if |x − (0.75, 0.5)| < 0.1 and |t − round(t)| < 0.1, = 0 else.  
This is a time dependent variant of Problem B1. Describe what you see.  

4.3 Problem B3  
Solve the dual problem corresponding to Problem B1:  
     

! 

"#$% "& '(% +)% =*,x+ ,     (4.5)  
with homogeneous Neumann boundary conditions: ∂φ/∂n = 0, and source term  
 ψ(x) = 1, if |x − (0.25, 0.25)| < 0.1, = 0 elsewhere.  
Plot the dual solution φ(x), and give an interpretation with respect to the error of the FEM solution in 
Problem B1 in the point (0.25, 0.25).  

4.4 Problem B4 
Choose one of the following  
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4.4.1 Problem B4.1  
Consider the stationary Problem B1. Compute the residual R(U) of the approximate FEM solution. 
Refine the mesh using three different mesh refinement algorithms:  
 1. 3 uniform mesh refinements.  
 2. 5 local mesh refinements where in each step you refine 50% of the elements, those with 
 largest residual R(U).  
 3. 5 local mesh refinements where in each step you refine 50% of the elements, those with
 largest product h2R(U)×D2φ.  
How many nodes are used in the 3 approaches? What are the differences in the refined meshes for 
approach 2 and 3?  

4.4.2 Problem B4.2  
Solve the stationary and time dependent problems (Problems B1 + B2.2) on T1 and T2, now with  
ε = 10−4. What happens with the solutions? Modify the method using least squares stabilization. What 
changes?  

4.4.3 Problem B4.3  
Change the spatial FEM basis in Puffin to piecewise quadratic polynomials. Solve the stationary 
and the time dependent problem (Problems B1 + B2.2) with the new basis on T1 and T2.  

4.4.4 Problem B4.4  
Use Puffin to solve an engineering problem of your choice. Implement the new equation in 
Puffin, and use a different mesh (not the unit square). To generate a new mesh you may for example 
use Triangle, available for download at: 
http://www.cs.cmu.edu/ � quake/triangle.html 
The triangle can be mapped to another shape with three edges, like a sector of an ellipse. Extra credit 
for making meshes on unions of mapped squares and triangles (i.e. making unions of the mapped 
meshes ). You can also export the (p,e,t) from the PDE ToolBox mesh generator to the 
matlab workspace and use in Puffin. Figuring out how to set different boundary conditions on all 
edges, and different materials (heat conduction coefficients, etc) in different subdomains is a 
challenge. If you want to try your hand, get in touch with course administration for credits, etc. 


